This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

186 lines
3.3 KiB

  1. {
  2. "count": 1,
  3. "path" : "hw",
  4. "list": [
  5. {
  6. "task": {
  7. "size": 1048576,
  8. "iterations": 10000,
  9. "batching": {
  10. "batch_submit": false,
  11. "batch_size": 0
  12. }
  13. },
  14. "affinity": {
  15. "node": 0,
  16. "nnode_src": 0,
  17. "nnode_dst": 0
  18. }
  19. },
  20. {
  21. "task": {
  22. "size": 1048576,
  23. "iterations": 10000,
  24. "batching": {
  25. "batch_submit": false,
  26. "batch_size": 0
  27. }
  28. },
  29. "affinity": {
  30. "node": 0,
  31. "nnode_src": 0,
  32. "nnode_dst": 0
  33. }
  34. },
  35. {
  36. "task": {
  37. "size": 1048576,
  38. "iterations": 10000,
  39. "batching": {
  40. "batch_submit": false,
  41. "batch_size": 0
  42. }
  43. },
  44. "affinity": {
  45. "node": 0,
  46. "nnode_src": 0,
  47. "nnode_dst": 0
  48. }
  49. },
  50. {
  51. "task": {
  52. "size": 1048576,
  53. "iterations": 10000,
  54. "batching": {
  55. "batch_submit": false,
  56. "batch_size": 0
  57. }
  58. },
  59. "affinity": {
  60. "node": 0,
  61. "nnode_src": 0,
  62. "nnode_dst": 0
  63. }
  64. },
  65. {
  66. "task": {
  67. "size": 1048576,
  68. "iterations": 10000,
  69. "batching": {
  70. "batch_submit": false,
  71. "batch_size": 0
  72. }
  73. },
  74. "affinity": {
  75. "node": 0,
  76. "nnode_src": 0,
  77. "nnode_dst": 0
  78. }
  79. },
  80. {
  81. "task": {
  82. "size": 1048576,
  83. "iterations": 10000,
  84. "batching": {
  85. "batch_submit": false,
  86. "batch_size": 0
  87. }
  88. },
  89. "affinity": {
  90. "node": 0,
  91. "nnode_src": 0,
  92. "nnode_dst": 0
  93. }
  94. },
  95. {
  96. "task": {
  97. "size": 1048576,
  98. "iterations": 10000,
  99. "batching": {
  100. "batch_submit": false,
  101. "batch_size": 0
  102. }
  103. },
  104. "affinity": {
  105. "node": 0,
  106. "nnode_src": 0,
  107. "nnode_dst": 0
  108. }
  109. },
  110. {
  111. "task": {
  112. "size": 1048576,
  113. "iterations": 10000,
  114. "batching": {
  115. "batch_submit": false,
  116. "batch_size": 0
  117. }
  118. },
  119. "affinity": {
  120. "node": 0,
  121. "nnode_src": 0,
  122. "nnode_dst": 0
  123. }
  124. },
  125. {
  126. "task": {
  127. "size": 1048576,
  128. "iterations": 10000,
  129. "batching": {
  130. "batch_submit": false,
  131. "batch_size": 0
  132. }
  133. },
  134. "affinity": {
  135. "node": 0,
  136. "nnode_src": 0,
  137. "nnode_dst": 0
  138. }
  139. },
  140. {
  141. "task": {
  142. "size": 1048576,
  143. "iterations": 10000,
  144. "batching": {
  145. "batch_submit": false,
  146. "batch_size": 0
  147. }
  148. },
  149. "affinity": {
  150. "node": 0,
  151. "nnode_src": 0,
  152. "nnode_dst": 0
  153. }
  154. },
  155. {
  156. "task": {
  157. "size": 1048576,
  158. "iterations": 10000,
  159. "batching": {
  160. "batch_submit": false,
  161. "batch_size": 0
  162. }
  163. },
  164. "affinity": {
  165. "node": 0,
  166. "nnode_src": 0,
  167. "nnode_dst": 0
  168. }
  169. },
  170. {
  171. "task": {
  172. "size": 1048576,
  173. "iterations": 10000,
  174. "batching": {
  175. "batch_submit": false,
  176. "batch_size": 0
  177. }
  178. },
  179. "affinity": {
  180. "node": 0,
  181. "nnode_src": 0,
  182. "nnode_dst": 0
  183. }
  184. }
  185. ]
  186. }