|
|
#pragma once
#include <iostream>
#include <vector>
#include <chrono>
#include <pthread.h>
#include <semaphore.h>
#include <numa.h>
#include <dml/dml.hpp>
#include "statuscode-tostring.hpp"
struct ThreadArgs { // thread placement / engine selection
uint8_t numa_node; uint8_t core; // region size and source+destination for move
size_t size; uint8_t nnode_src; uint8_t nnode_dst; // repetition
uint32_t rep_count; bool batch_submit; uint32_t batch_size; uint32_t barrier_after_n_operations; // thread output
dml::status_code status; // average run duration in microseconds
double combined_duration; double submit_duration; double complete_duration; // completed iterations
uint32_t rep_completed; // set by execution
sem_t* sig; };
double avg(const std::vector<double>& v) { int n = 0; double mean = 0.0;
for (const auto x : v) { const double delta = static_cast<double>(x) - mean; mean += delta / ++n; }
return mean; }
#define LOG_CODE_INFO "Location: " << __FILE__ << "@" << __LINE__ << "::" << __FUNCTION__ << std::endl
#define LOG_ERR { pthread_t t = pthread_self(); std::cerr << "--- BEGIN ERROR MSG ---" << std::endl << "Physical: [Node " << args->numa_node << " | Core " << args->core << " | Thread " << t << "]" << std::endl; } std::cerr << LOG_CODE_INFO
#define CHECK_STATUS(status,msg) { if (status != dml::status_code::ok) { LOG_ERR << "Status Code: " << StatusCodeToString(status) << std::endl << #msg << std::endl; args->status = status; return nullptr; }}
template <typename path> void* thread_function(void* argp) { ThreadArgs* args = reinterpret_cast<ThreadArgs*>(argp);
std::vector<double> submission_durations; std::vector<double> completion_durations; std::vector<double> combined_durations;
// set numa node and core affinity of the current thread
numa_run_on_node(args->numa_node); cpu_set_t cpuset; CPU_ZERO(&cpuset); CPU_SET(args->core, &cpuset); if (pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) != 0) { LOG_ERR << "Error setting affinity for thread" << std::endl; return nullptr; } // allocate memory for the move operation on the requested numa nodes
void* src = numa_alloc_onnode(args->size, args->nnode_src); void* dst = numa_alloc_onnode(args->size, args->nnode_dst); dml::data_view srcv = dml::make_view(reinterpret_cast<uint8_t*>(src), args->size); dml::data_view dstv = dml::make_view(reinterpret_cast<uint8_t*>(dst), args->size);
args->status = dml::status_code::ok; args->rep_completed = 0;
// wait for specified signal so that all operations start at the same time
sem_wait(args->sig);
for (uint32_t i = 0; i < args->rep_count; i++) { if (args->batch_submit) { uint32_t opcount = args->batch_size;
if (args->barrier_after_n_operations > 0) { opcount += opcount / args->barrier_after_n_operations; }
const auto st = std::chrono::high_resolution_clock::now();
auto sequence = dml::sequence(opcount, std::allocator<dml::byte_t>());
for (uint32_t j = 0; j < args->batch_size; j++) { const auto status = sequence.add(dml::mem_copy, srcv, dstv);
if (j % args->barrier_after_n_operations == 0) { sequence.add(dml::nop); } }
auto handler = dml::submit<path>(dml::batch, sequence);
const auto se = std::chrono::high_resolution_clock::now();
auto result = handler.get();
const auto et = std::chrono::high_resolution_clock::now();
submission_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(se - st).count()); completion_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(et - se).count()); combined_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(et - st).count()); } else { const auto st = std::chrono::high_resolution_clock::now();
// we use the asynchronous submit-routine even though this is not required
// here, however the project later on will only use async operation and
// therefore this behaviour should be benchmarked
auto handler = dml::submit<path>(dml::mem_copy, srcv, dstv);
const auto se = std::chrono::high_resolution_clock::now();
auto result = handler.get();
const auto et = std::chrono::high_resolution_clock::now();
const dml::status_code status = result.status; CHECK_STATUS(status, "Operation completed with an Error!");
submission_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(se - st).count()); completion_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(et - se).count()); combined_durations.emplace_back(std::chrono::duration_cast<std::chrono::microseconds>(et - st).count()); }
args->rep_completed++; }
// free the allocated memory regions on the selected nodes
numa_free(src, args->size); numa_free(dst, args->size);
args->combined_duration = avg(combined_durations); args->complete_duration = avg(completion_durations); args->submit_duration = avg(submission_durations); args->sig = nullptr;
return nullptr; }
template <typename path> void execute_dml_memcpy(std::vector<ThreadArgs>& args) { sem_t sem; std::vector<pthread_t> threads;
// initialize semaphore and numactl-library
sem_init(&sem, 0, 0); numa_available();
// for each submitted task we link the semaphore
// and create the thread, passing the argument
for (auto& arg : args) { arg.sig = &sem; threads.emplace_back();
if (pthread_create(&threads.back(), nullptr, thread_function<path>, &arg) != 0) { std::cerr << "Error creating thread" << std::endl; exit(1); } }
// post will make all waiting threads pass
sem_post(&sem);
for (pthread_t& t : threads) { pthread_join(t, nullptr); }
sem_destroy(&sem); }
|