|
|
import os import json import pandas as pd from pandas.core.ops import methods from typing import List import seaborn as sns import matplotlib.pyplot as plt
x_label = "Size of Submitted Task" y_label = "Throughput in GiB/s" var_label = "Submission Type" sizes = ["1kib", "4kib", "1mib", "1gib"] sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"] types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi Submit, Count 50", "Single Submit"] title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR"
data = { x_label : sizes_nice, types_nice[0] : [], types_nice[1] : [], types_nice[2] : [], types_nice[3] : [], types_nice[4] : [] }
stdev = {}
def calc_throughput(size_bytes,time_microseconds): time_seconds = time_microseconds * 1e-6 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs
def index_from_element(value,array): for (idx,val) in enumerate(array): if val == value: return idx return 0
def load_and_process_submit_json(file_path,s,t): with open(file_path, 'r') as file: data = json.load(file) time_microseconds = data["list"][0]["report"]["time"]["combined_avg"] if t not in stdev: stdev[t] = dict() stdev[t][s] = data["list"][0]["report"]["time"]["combined_stdev"] return time_microseconds
def stdev_functor(values): v = values[0] sd = stdev[v] return (v - sd, v + sd)
# Function to plot the graph for the new benchmark def plot_submit_graph(file_paths, type_label): times = []
type_index = index_from_element(type_label,types) type_nice = types_nice[type_index]
idx = 0 for file_path in file_paths: time_microseconds = load_and_process_submit_json(file_path,sizes_nice[idx],type_nice) times.append(time_microseconds) idx = idx + 1
# Adjust time measurements based on type # which can contain multiple submissions if type_label in {"bs10", "ms10"}: times = [time / 10 for time in times] elif type_label in {"ms50", "bs50"}: times = [time / 50 for time in times]
times[0] = times[0] / 1 times[1] = times[1] / 4 times[2] = times[2] / 1024 times[3] = times[3] / (1024 * 1024)
throughput = [calc_throughput(1024,t) for t in times]
data[type_nice] = throughput
# Main function to iterate over files and create plots for the new benchmark def main(): folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder
for type_label in types: file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] plot_submit_graph(file_paths, type_label)
df = pd.DataFrame(data) dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
error_values: List[float] = [] for index,row in dfm.iterrows(): s = dfm[x_label][index] t = dfm[var_label][index] error_values.append(stdev[t][s])
dfm["Stdev"] = error_values
print(dfm)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis", errorbar=("ci", 100)) plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight') plt.show()
if __name__ == "__main__": main()
|