|
|
import os import json import pandas as pd from pandas.core.ops import methods from typing import List import seaborn as sns import matplotlib.pyplot as plt
runid = "Run ID" x_label = "Size of Submitted Task" y_label = "Throughput in GiB/s" var_label = "Submission Type" sizes = ["1kib", "4kib", "1mib", "1gib"] sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"] types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"] title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR"
index = [runid, x_label, var_label] data = []
def calc_throughput(size_bytes,time_microseconds): time_seconds = time_microseconds * 1e-6 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs
def index_from_element(value,array): for (idx,val) in enumerate(array): if val == value: return idx return 0
def load_and_process_submit_json(file_path): with open(file_path, 'r') as file: data = json.load(file) time = { "combined" : data["list"][0]["report"]["time"]["combined"], "submit" : data["list"][0]["report"]["time"]["submit"], "complete" : data["list"][0]["report"]["time"]["complete"]} return time
# Function to plot the graph for the new benchmark def plot_submit_graph(file_paths, type_label): times = []
type_index = index_from_element(type_label,types) type_nice = types_nice[type_index]
idx = 0 for file_path in file_paths: time = load_and_process_submit_json(file_path) times.append(time["combined"]) idx = idx + 1
# Adjust time measurements based on type # which can contain multiple submissions if type_label in {"bs10", "ms10"}: times = [[t / 10 for t in time] for time in times] elif type_label in {"ms50", "bs50"}: times = [[t / 50 for t in time] for time in times]
times[0] = [t / 1 for t in times[0]] times[1] = [t / 4 for t in times[1]] times[2] = [t / (1024) for t in times[2]] times[3] = [t / (1024*1024) for t in times[3]]
throughput = [[calc_throughput(1024,time) for time in t] for t in times]
idx = 0 for run_set in throughput: run_idx = 0 for run in run_set: data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]}) run_idx = run_idx + 1 idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark def main(): folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder
for type_label in types: file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] plot_submit_graph(file_paths, type_label)
df = pd.DataFrame(data) df.set_index(index, inplace=True) print(df)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=df, kind='bar', height=5, aspect=1, palette="viridis", errorbar="sd") plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight') plt.show()
if __name__ == "__main__": main()
|