diff --git a/benchmarks/benchmark-plotters/plot-perf-submitmethod.py b/benchmarks/benchmark-plotters/plot-perf-submitmethod.py index 559649b..4d82bbc 100644 --- a/benchmarks/benchmark-plotters/plot-perf-submitmethod.py +++ b/benchmarks/benchmark-plotters/plot-perf-submitmethod.py @@ -6,25 +6,18 @@ from typing import List import seaborn as sns import matplotlib.pyplot as plt +runid = "Run ID" x_label = "Size of Submitted Task" y_label = "Throughput in GiB/s" var_label = "Submission Type" sizes = ["1kib", "4kib", "1mib", "1gib"] sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"] types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] -types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi Submit, Count 50", "Single Submit"] +types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"] title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR" -data = { - x_label : sizes_nice, - types_nice[0] : [], - types_nice[1] : [], - types_nice[2] : [], - types_nice[3] : [], - types_nice[4] : [] -} - -stdev = {} +index = [runid, x_label, var_label] +data = [] def calc_throughput(size_bytes,time_microseconds): time_seconds = time_microseconds * 1e-6 @@ -39,20 +32,11 @@ def index_from_element(value,array): return 0 -def load_and_process_submit_json(file_path,s,t): +def load_and_process_submit_json(file_path): with open(file_path, 'r') as file: data = json.load(file) - time_microseconds = data["list"][0]["report"]["time"]["combined_avg"] - if t not in stdev: stdev[t] = dict() - stdev[t][s] = data["list"][0]["report"]["time"]["combined_stdev"] - return time_microseconds - - -def stdev_functor(values): - v = values[0] - sd = stdev[v] - return (v - sd, v + sd) - + time = { "combined" : data["list"][0]["report"]["time"]["combined"], "submit" : data["list"][0]["report"]["time"]["submit"], "complete" : data["list"][0]["report"]["time"]["complete"]} + return time # Function to plot the graph for the new benchmark def plot_submit_graph(file_paths, type_label): @@ -63,49 +47,47 @@ def plot_submit_graph(file_paths, type_label): idx = 0 for file_path in file_paths: - time_microseconds = load_and_process_submit_json(file_path,sizes_nice[idx],type_nice) - times.append(time_microseconds) + time = load_and_process_submit_json(file_path) + times.append(time["combined"]) idx = idx + 1 # Adjust time measurements based on type # which can contain multiple submissions if type_label in {"bs10", "ms10"}: - times = [time / 10 for time in times] + times = [[t / 10 for t in time] for time in times] elif type_label in {"ms50", "bs50"}: - times = [time / 50 for time in times] + times = [[t / 50 for t in time] for time in times] - times[0] = times[0] / 1 - times[1] = times[1] / 4 - times[2] = times[2] / 1024 - times[3] = times[3] / (1024 * 1024) + times[0] = [t / 1 for t in times[0]] + times[1] = [t / 4 for t in times[1]] + times[2] = [t / (1024) for t in times[2]] + times[3] = [t / (1024*1024) for t in times[3]] - throughput = [calc_throughput(1024,t) for t in times] + throughput = [[calc_throughput(1024,time) for time in t] for t in times] - data[type_nice] = throughput + idx = 0 + for run_set in throughput: + run_idx = 0 + for run in run_set: + data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]}) + run_idx = run_idx + 1 + idx = idx + 1 # Main function to iterate over files and create plots for the new benchmark def main(): folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder + for type_label in types: file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] plot_submit_graph(file_paths, type_label) df = pd.DataFrame(data) - dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label) - - error_values: List[float] = [] - for index,row in dfm.iterrows(): - s = dfm[x_label][index] - t = dfm[var_label][index] - error_values.append(stdev[t][s]) - - dfm["Stdev"] = error_values - - print(dfm) + df.set_index(index, inplace=True) + print(df) - sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis", errorbar=("ci", 100)) + sns.catplot(x=x_label, y=y_label, hue=var_label, data=df, kind='bar', height=5, aspect=1, palette="viridis", errorbar="sd") plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight') plt.show()