Browse Source

remove sub and overchunking for scanb caching, use the per-iteration barriers again

master
Constantin Fürst 11 months ago
parent
commit
21702d5309
  1. 81
      qdp_project/src/Benchmark.cpp
  2. 24
      qdp_project/src/Configuration.hpp
  3. 2
      qdp_project/src/utils/aggregation.h

81
qdp_project/src/Benchmark.cpp

@ -29,51 +29,6 @@ uint64_t* DATA_B_;
uint16_t* MASK_A_;
uint64_t* DATA_DST_;
// if more b than j -> perform b normal, subsplit j
// if more j than b -> subsplit b like it is now
template<size_t TC_CACHING>
void caching(size_t gid, size_t tid) {
constexpr size_t VIRT_TID_INCREMENT = TC_CACHING / TC_AGGRJ;
constexpr size_t SUBCHUNK_THREAD_RATIO = TC_AGGRJ / (TC_CACHING == 0 ? 1 : TC_CACHING);
constexpr bool CACHE_SUBCHUNKING = SUBCHUNK_THREAD_RATIO > 1;
constexpr bool CACHE_OVERCHUNKING = VIRT_TID_INCREMENT > 1;
if constexpr (CACHE_SUBCHUNKING) {
constexpr size_t SUBCHUNK_COUNT = SUBCHUNK_THREAD_RATIO > 0 ? SUBCHUNK_THREAD_RATIO : 1;
constexpr size_t SUBCHUNK_SIZE_B = CHUNK_SIZE_B / SUBCHUNK_COUNT;
constexpr size_t SUBCHUNK_SIZE_ELEMENTS = CHUNK_SIZE_ELEMENTS / SUBCHUNK_COUNT;
for (size_t i = 0; i < RUN_COUNT; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_SCANB>(DATA_B_, chunk_index, tid);
for (size_t j = 0; j < SUBCHUNK_COUNT; j++) {
uint64_t* sub_chunk_ptr = &chunk_ptr[j * SUBCHUNK_SIZE_ELEMENTS];
CACHE_.Access(reinterpret_cast<uint8_t*>(sub_chunk_ptr), SUBCHUNK_SIZE_B);
}
}
}
else if constexpr (CACHE_OVERCHUNKING) {
for (size_t tid_virt = tid; tid_virt < TC_AGGRJ; tid_virt += VIRT_TID_INCREMENT) {
for (size_t i = 0; i < RUN_COUNT; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t *chunk_ptr = get_chunk<TC_AGGRJ>(DATA_B_, chunk_index, tid_virt);
CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), CHUNK_SIZE_B);
}
}
}
else {
for (size_t i = 0; i < RUN_COUNT; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_SCANB>(DATA_B_, chunk_index, tid);
CACHE_.Access(reinterpret_cast<uint8_t*>(chunk_ptr), CHUNK_SIZE_B);
}
}
}
void scan_b(size_t gid, size_t tid) {
THREAD_TIMING_[SCANB_TIMING_INDEX][UniqueIndex(gid,tid)].clear();
THREAD_TIMING_[SCANB_TIMING_INDEX][UniqueIndex(gid,tid)].resize(1);
@ -83,7 +38,14 @@ void scan_b(size_t gid, size_t tid) {
THREAD_TIMING_[SCANB_TIMING_INDEX][UniqueIndex(gid,tid)][0][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
if constexpr (PERFORM_CACHING) {
caching<TC_SCANB>(gid, tid);
static_assert(TC_AGGRJ == TC_SCANB);
for (size_t i = 0; i < RUN_COUNT; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_SCANB>(DATA_B_, chunk_index, tid);
CACHE_.Access(reinterpret_cast<uint8_t*>(chunk_ptr), SUBCHUNK_SIZE_B_AGGRJ);
}
}
THREAD_TIMING_[SCANB_TIMING_INDEX][UniqueIndex(gid,tid)][0][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
@ -97,25 +59,25 @@ void scan_a(size_t gid, size_t tid) {
LAUNCH_.wait();
for (size_t i = 0; i < RUN_COUNT; i++) {
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][0][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_SCANA>(DATA_A_, chunk_index, tid);
uint16_t* mask_ptr = get_mask<TC_SCANA>(MASK_A_, chunk_index, tid);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, CMP_A, CHUNK_SIZE_B / TC_SCANA);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, CMP_A, SUBCHUNK_SIZE_B_SCANA);
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][0][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][0][TIME_STAMP_END] = std::chrono::steady_clock::now();
BARRIERS_[gid]->arrive_and_wait();
THREAD_TIMING_[SCANA_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_END] = std::chrono::steady_clock::now();
}
BARRIERS_[gid]->arrive_and_drop();
}
void aggr_j(size_t gid, size_t tid) {
constexpr size_t SUBCHUNK_SIZE_B = CHUNK_SIZE_B / TC_AGGRJ;
constexpr size_t LAST_CHUNK_SIZE_B = SUBCHUNK_SIZE_B + (CHUNK_SIZE_B % (TC_AGGRJ * GROUP_COUNT));
CACHE_HITS_[UniqueIndex(gid,tid)] = 0;
THREAD_TIMING_[AGGRJ_TIMING_INDEX][UniqueIndex(gid,tid)].clear();
@ -124,11 +86,12 @@ void aggr_j(size_t gid, size_t tid) {
__m512i aggregator = aggregation::OP::zero();
LAUNCH_.wait();
BARRIERS_[gid]->arrive_and_drop();
for (size_t i = 0; i < RUN_COUNT; i++) {
THREAD_TIMING_[AGGRJ_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
BARRIERS_[gid]->arrive_and_wait();
THREAD_TIMING_[AGGRJ_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
const size_t chunk_index = get_chunk_index(gid, i);
@ -139,7 +102,7 @@ void aggr_j(size_t gid, size_t tid) {
uint64_t* data_ptr;
if constexpr (PERFORM_CACHING) {
data = CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), SUBCHUNK_SIZE_B, dsacache::FLAG_ACCESS_WEAK);
data = CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), SUBCHUNK_SIZE_B_AGGRJ, dsacache::FLAG_ACCESS_WEAK);
data->WaitOnCompletion();
data_ptr = reinterpret_cast<uint64_t*>(data->GetDataLocation());
@ -159,12 +122,14 @@ void aggr_j(size_t gid, size_t tid) {
}
uint64_t tmp = _mm512_reduce_add_epi64(aggregator);
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr_a, SUBCHUNK_SIZE_B);
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr_a, SUBCHUNK_SIZE_B_AGGRJ);
THREAD_TIMING_[AGGRJ_TIMING_INDEX][UniqueIndex(gid,tid)][i][TIME_STAMP_END] = std::chrono::steady_clock::now();
}
aggregation::happly(&DATA_DST_[UniqueIndex(gid,tid)], aggregator);
BARRIERS_[gid]->arrive_and_drop();
}
int main() {

24
qdp_project/src/Configuration.hpp

@ -13,37 +13,34 @@ constexpr int MEM_NODE_HBM = 8;
constexpr int MEM_NODE_DRAM = 0;
#ifdef MODE_PREFETCH
constexpr uint32_t GROUP_COUNT = 8;
constexpr size_t CHUNK_SIZE_B = 16_MiB;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t GROUP_COUNT = 4;
constexpr size_t CHUNK_SIZE_B = 8_MiB;
constexpr uint32_t TC_SCANA = 4;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = true;
constexpr bool PERFORM_CACHING_IN_AGGREGATION = false;
constexpr int MEM_NODE_A = 1;
constexpr int MEM_NODE_B = 2;
constexpr int MEM_NODE_A = 0;
constexpr int MEM_NODE_B = 0;
constexpr char MODE_STRING[] = "prefetch";
#endif
#ifdef MODE_DRAM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 8;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t GROUP_COUNT = 4;
constexpr uint32_t TC_SCANA = 4;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool PERFORM_CACHING_IN_AGGREGATION = false;
constexpr int MEM_NODE_A = 0;
constexpr int MEM_NODE_B = 0;
constexpr char MODE_STRING[] = "dram";
#endif
#ifdef MODE_HBM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 8;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t GROUP_COUNT = 4;
constexpr uint32_t TC_SCANA = 4;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool PERFORM_CACHING_IN_AGGREGATION = false;
constexpr int MEM_NODE_A = 0;
constexpr int MEM_NODE_B = 8;
constexpr char MODE_STRING[] = "hbm";
@ -55,6 +52,9 @@ constexpr size_t CHUNK_COUNT = WL_SIZE_B / CHUNK_SIZE_B;
constexpr size_t CHUNK_SIZE_ELEMENTS = CHUNK_SIZE_B / sizeof(uint64_t);
constexpr size_t RUN_COUNT = CHUNK_COUNT / GROUP_COUNT;
constexpr size_t SUBCHUNK_SIZE_B_SCANA = CHUNK_SIZE_B / TC_SCANA;
constexpr size_t SUBCHUNK_SIZE_B_AGGRJ = CHUNK_SIZE_B / TC_AGGRJ;
static_assert(RUN_COUNT > 0);
static_assert(WL_SIZE_B % 16 == 0);
static_assert(CHUNK_SIZE_B % 16 == 0);

2
qdp_project/src/utils/aggregation.h

@ -252,8 +252,6 @@ public:
size_t value_count = chunk_size_b / sizeof(base_t);
size_t i = 0;
*time_load = 0;
// stop before! running out of space
if(value_count >= lanes) // keep in mind size_w is unsigned so if it becomes negative, it doesn't.
for(; i <= value_count - lanes; i += lanes) {

Loading…
Cancel
Save