Browse Source

note that the cost observed for swq submission is lower than what reese kuper saw

master
Constantin Fürst 11 months ago
parent
commit
43254d0f3c
  1. 2
      thesis/content/30_performance.tex

2
thesis/content/30_performance.tex

@ -60,7 +60,7 @@ We anticipate that single submissions will consistently yield poorer performance
\label{fig:perf-submitmethod} \label{fig:perf-submitmethod}
\end{figure} \end{figure}
In Figure \ref{fig:perf-submitmethod} we conclude that with transfers of 1 MiB and upwards, the submission method makes no noticeable difference. For smaller transfers the performance varies greatly, with batch operations leading in throughput. This finding is aligned with the observation that \enquote{SWQ observes lower throughput between 1-8 KB [transfer size]} \cite[p. 6 and 7]{intel:analysis} for normal submission method. \par
In Figure \ref{fig:perf-submitmethod} we conclude that with transfers of 1 MiB and upwards, the submission method makes no noticeable difference. For smaller transfers the performance varies greatly, with batch operations leading in throughput. Reese Kuper et al. observed that \enquote{SWQ observes lower throughput between 1-8 KB [transfer size]} \cite[pp. 6]{intel:analysis}. We however observe a much higher point of equalization, pointing to additional delays introduced by programming the \gls{dsa} through \gls{intel:dml}. \par
Another limitation may be observed in this result, namely the inherent throughput limit per \gls{dsa} chip of close to 30 GiB/s. This is apparently caused by I/O fabric limitations \cite[p. 5]{intel:analysis}. \par Another limitation may be observed in this result, namely the inherent throughput limit per \gls{dsa} chip of close to 30 GiB/s. This is apparently caused by I/O fabric limitations \cite[p. 5]{intel:analysis}. \par

Loading…
Cancel
Save