Browse Source

redo the plots for benchmarks of peak throughput and work division

master
Constantin Fürst 11 months ago
parent
commit
579494bc41
  1. BIN
      benchmarks/benchmark-plots/plot-1dsa-throughput.pdf
  2. BIN
      benchmarks/benchmark-plots/plot-2dsa-throughput.pdf
  3. BIN
      benchmarks/benchmark-plots/plot-4dsa-throughput.pdf
  4. BIN
      benchmarks/benchmark-plots/plot-8cpu-throughput.pdf
  5. BIN
      benchmarks/benchmark-plots/plot-8dsa-throughput.pdf
  6. BIN
      benchmarks/benchmark-plots/plot-andrepeak-throughput.pdf
  7. BIN
      benchmarks/benchmark-plots/plot-average-throughput.pdf
  8. BIN
      benchmarks/benchmark-plots/plot-dsa-throughput-scaling.pdf
  9. BIN
      benchmarks/benchmark-plots/plot-smart-throughput.pdf
  10. 83
      benchmarks/benchmark-plotters/plot-perf-peakthroughput-bar.py
  11. 110
      benchmarks/benchmark-plotters/plot-perf-peakthroughput-cpu-bar.py
  12. BIN
      thesis/images/plot-1dsa-throughput.pdf
  13. BIN
      thesis/images/plot-2dsa-throughput.pdf
  14. BIN
      thesis/images/plot-4dsa-throughput.pdf
  15. BIN
      thesis/images/plot-8cpu-throughput.pdf
  16. BIN
      thesis/images/plot-8dsa-throughput.pdf
  17. BIN
      thesis/images/plot-andrepeak-throughput.pdf
  18. BIN
      thesis/images/plot-average-throughput.pdf
  19. BIN
      thesis/images/plot-brute-cpu-throughput.pdf
  20. BIN
      thesis/images/plot-dsa-throughput-scaling.pdf
  21. BIN
      thesis/images/plot-smart-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-1dsa-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-allnodes-cpu-throughput.pdf → benchmarks/benchmark-plots/plot-2dsa-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-brute-cpu-throughput.pdf → benchmarks/benchmark-plots/plot-4dsa-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-8cpu-throughput.pdf

BIN
thesis/images/plot-allnodes-throughput.pdf → benchmarks/benchmark-plots/plot-8dsa-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-andrepeak-cpu-throughput.pdf → benchmarks/benchmark-plots/plot-andrepeak-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-average-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-dsa-throughput-scaling.pdf

BIN
benchmarks/benchmark-plots/plot-smart-throughput.pdf

83
benchmarks/benchmark-plotters/plot-perf-peakthroughput-bar.py

@ -34,6 +34,7 @@ description_allnodes = \
index = [ runid, x_label, y_label]
data = []
data_avg = {}
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
@ -47,49 +48,109 @@ def get_timing(file_path):
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, src_node, dst_node):
def process_file_to_dataset(file_path, config, dst_node):
size = 1024*1024*1024
if config not in data_avg:
data_avg[config] = 0
timing = get_timing(file_path)
run_idx = 0
for t in timing:
tp = calc_throughput(size, t)
data_avg[config] += tp / len(timing)
data.append({ runid : run_idx, x_label : dst_node, y_label : tp})
run_idx = run_idx + 1
def plot_bar(table,node_config):
def plot_bar(table,node_config,display_x,display_y):
plt.figure(figsize=(2, 3))
sns.barplot(x=x_label, y=y_label, data=table, palette="mako", errorbar="sd")
plt.ylim(0, 75)
plt.xlabel(display_x)
plt.ylabel(display_y)
plt.savefig(os.path.join(output_path, f"plot-{node_config}-throughput.pdf"), bbox_inches='tight')
plt.show()
def PlotAndrePeakResults():
data_peakbench_andre = [
{ runid : 0, x_label : 8, y_label : 64 },
{ runid : 0, x_label : 11, y_label : 63 },
{ runid : 0, x_label : 12, y_label : 40 },
{ runid : 0, x_label : 15, y_label : 54 }
]
df = pd.DataFrame(data_peakbench_andre)
df.set_index(index, inplace=True)
plot_bar(df, "andrepeak", x_label, y_label)
return df
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main(node_config):
src_node = 0
for dst_node in {8,11,12,15}:
file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-1gib-{node_config}.json")
process_file_to_dataset(file, src_node, dst_node)
dst_nodes = {8,11,12,15}
for dst_node in dst_nodes:
file = os.path.join(result_path, f"copy-n0ton{dst_node}-1gib-{node_config}.json")
process_file_to_dataset(file, node_config, dst_node)
data_avg[node_config] = data_avg[node_config] / len(dst_nodes)
df = pd.DataFrame(data)
data.clear()
df.set_index(index, inplace=True)
plot_bar(df, node_config)
plot_bar(df, node_config, x_label, y_label)
return df
def get_scaling_factor(baseline,topline,utilfactor):
return (topline / baseline) * (1 / utilfactor)
if __name__ == "__main__":
main("1dsa")
main("2dsa")
main("4dsa")
main("8dsa")
dsa_df1 = main("1dsa")
dsa_df2 = main("2dsa")
dsa_df4 = main("4dsa")
dsa_df8 = main("8dsa")
cpu_df8 = main("8cpu")
cpu_dfandre = PlotAndrePeakResults()
x_dsacount = "Count of DSAs"
y_avgtp = "Average Throughput in GiB/s"
y_scaling = "Scaling Factor"
data_average = [
{ runid : 0, x_label : 1, y_label : data_avg["1dsa"] },
{ runid : 0, x_label : 2, y_label : data_avg["2dsa"] },
{ runid : 0, x_label : 4, y_label : data_avg["4dsa"] },
{ runid : 0, x_label : 8, y_label : data_avg["8dsa"] }
]
average_df = pd.DataFrame(data_average)
average_df.set_index(index, inplace=True)
plot_bar(average_df, "average", x_dsacount, y_avgtp)
data_scaling = [
{ x_dsacount : 1, y_scaling : get_scaling_factor(data_avg["1dsa"], data_avg["1dsa"], 1) },
{ x_dsacount : 2, y_scaling : get_scaling_factor(data_avg["1dsa"], data_avg["2dsa"], 2) },
{ x_dsacount : 4, y_scaling : get_scaling_factor(data_avg["1dsa"], data_avg["4dsa"], 4) },
{ x_dsacount : 8, y_scaling : get_scaling_factor(data_avg["1dsa"], data_avg["8dsa"], 8) }
]
scaling_df = pd.DataFrame(data_scaling)
sns.lineplot(x=x_dsacount, y=y_scaling, data=scaling_df, marker='o', linestyle='-', color='b', markersize=8)
plt.xlim(0,10)
plt.ylim(0,1.25)
plt.savefig(os.path.join(output_path, f"plot-dsa-throughput-scaling.pdf"), bbox_inches='tight')
plt.show()

110
benchmarks/benchmark-plotters/plot-perf-peakthroughput-cpu-bar.py

@ -1,110 +0,0 @@
import os
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, load_time_mesurements, get_task_count
result_path = "benchmark-results/"
output_path = "benchmark-plots/"
runid = "Run ID"
x_label = "Destination Node"
y_label = "Throughput in GiB/s"
title_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using all 8 DSA Chiplets available on the System"""
title_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket"""
title_difference = \
"""Gain in Copy Throughput in GiB/s of All-DSA vs. Smart Assignment"""
description_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n
And using only the Source and Destination Nodes DSA for Inter-Socket"""
description_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 8 DSA Chiplets available on the System"""
index = [ runid, x_label, y_label]
data = []
data_peakbench_andre = [
{ runid : 0, x_label : 8, y_label : 64 },
{ runid : 0, x_label : 11, y_label : 63 },
{ runid : 0, x_label : 12, y_label : 40 },
{ runid : 0, x_label : 15, y_label : 54 }
]
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def get_timing(file_path):
divisor = get_task_count(file_path)
return [ x / divisor for x in load_time_mesurements(file_path)]
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, src_node, dst_node):
size = 1024*1024*1024
timing = get_timing(file_path)
run_idx = 0
for t in timing:
tp = calc_throughput(size, t)
data.append({ runid : run_idx, x_label : dst_node, y_label : tp})
run_idx = run_idx + 1
def plot_bar(table,title,node_config):
plt.figure(figsize=(2, 3))
sns.barplot(x=x_label, y=y_label, data=table, palette="mako", errorbar="sd")
plt.ylim(0, 75)
plt.savefig(os.path.join(output_path, f"plot-{node_config}-cpu-throughput.pdf"), bbox_inches='tight')
plt.show()
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main(node_config,title,ext):
src_node = 0
for dst_node in {8,11,12,15}:
file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-1gib-{node_config}{ext}.json")
process_file_to_dataset(file, src_node, dst_node)
df = pd.DataFrame(data)
data.clear()
df.set_index(index, inplace=True)
if ext == "brute": node_config = ext
plot_bar(df, title, node_config)
return df
def plotandre():
df = pd.DataFrame(data_peakbench_andre)
df.set_index(index, inplace=True)
plot_bar(df, title_allnodes, "andrepeak")
return df
if __name__ == "__main__":
dandr = plotandre()
dall = main("allnodes", title_allnodes, "-cpu")
dbrt = main("brute", title_allnodes, "-cpu")

BIN
thesis/images/plot-1dsa-throughput.pdf

BIN
thesis/images/plot-allnodes-cpu-throughput.pdf → thesis/images/plot-2dsa-throughput.pdf

BIN
thesis/images/plot-4dsa-throughput.pdf

BIN
thesis/images/plot-8cpu-throughput.pdf

BIN
benchmarks/benchmark-plots/plot-allnodes-throughput.pdf → thesis/images/plot-8dsa-throughput.pdf

BIN
thesis/images/plot-andrepeak-cpu-throughput.pdf → thesis/images/plot-andrepeak-throughput.pdf

BIN
thesis/images/plot-average-throughput.pdf

BIN
thesis/images/plot-brute-cpu-throughput.pdf

BIN
thesis/images/plot-dsa-throughput-scaling.pdf

BIN
thesis/images/plot-smart-throughput.pdf

Loading…
Cancel
Save