Browse Source

refactor the benchmark plotters and submit newly plotted graphs

master
Constantin Fürst 1 year ago
parent
commit
60a5ba5120
  1. 0
      benchmarks/benchmark-plotters/__init__.py
  2. BIN
      benchmarks/benchmark-plotters/__pycache__/common.cpython-39.pyc
  3. 15
      benchmarks/benchmark-plotters/common.py
  4. 41
      benchmarks/benchmark-plotters/plot-cost-mtsubmit.py
  5. 37
      benchmarks/benchmark-plotters/plot-perf-enginelocation.py
  6. 59
      benchmarks/benchmark-plotters/plot-perf-peakthroughput.py
  7. 41
      benchmarks/benchmark-plotters/plot-perf-submitmethod.py
  8. BIN
      benchmarks/benchmark-results/plot-opt-submitmethod.png
  9. BIN
      benchmarks/benchmark-results/plot-perf-allnodes-throughput.png
  10. BIN
      benchmarks/benchmark-results/plot-perf-allnodethroughput.png
  11. BIN
      benchmarks/benchmark-results/plot-perf-enginelocation.png
  12. BIN
      benchmarks/benchmark-results/plot-perf-mtsubmit.png
  13. BIN
      benchmarks/benchmark-results/plot-perf-smart-throughput.png
  14. BIN
      benchmarks/benchmark-results/plot-perf-smartthroughput.png

0
benchmarks/benchmark-plotters/__init__.py

BIN
benchmarks/benchmark-plotters/__pycache__/common.cpython-39.pyc

15
benchmarks/benchmark-plotters/common.py

@ -0,0 +1,15 @@
# calculates throughput in gib/s from the meassured
# transfer duration (in nanoseconds) for a given element
# with the size of this given in bytes
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
# reverse array search: return index of value in array
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0

41
benchmarks/benchmark-plotters/plot-cost-mtsubmit.py

@ -5,32 +5,35 @@ from itertools import chain
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID"
x_label = "Thread Count"
y_label = "Throughput in GiB/s"
var_label = "Thread Counts"
thread_counts = ["1t", "2t", "4t", "8t", "12t"]
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"]
engine_counts = ["1mib-1e_PREVENT_FROM_DISPLAYING", "1mib-4e_PREVENT_FROM_DISPLAYING", "1gib-1e", "1gib-4e"]
engine_counts_nice = ["1 E/WQ and Tasksize 1 MiB", "4 E/WQ and Tasksize 1 MiB", "1 E/WQ and Tasksize 1 GiB", "4 E/WQ and Tasksize 1 GiB"]
title = "Total Throughput - 120 Copy Operations split on Threads Intra-Node on DDR"
index = [runid, x_label, var_label]
data = []
engine_counts = ["1mib-1e", "1mib-4e", "1gib-1e", "1gib-4e"]
engine_counts_nice = ["1 E/WQ and 1 MiB", "4 E/WQ and 1 MiB", "1 E/WQ and 1 GiB", "4 E/WQ and 1 GiB"]
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
title = \
"""Total Throughput showing cost of MT Submit\n
Copying 120x split on n Threads Intra-Node on DDR\n
"""
description = \
"""Total Throughput showing cost of MT Submit\n
Running 120 Copy Operations split on n Threads\n
Copying Intra-Node on DDR performed for multiple Configurations\n
"""
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
index = [runid, x_label, var_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
@ -48,6 +51,11 @@ def load_time_mesurements(file_path):
"completion" : [x / 120 for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, engine_label, thread_count):
engine_index = index_from_element(engine_label,engine_counts)
engine_nice = engine_counts_nice[engine_index]
@ -69,6 +77,9 @@ def process_file_to_dataset(file_path, engine_label, thread_count):
return
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main():
folder_path = "benchmark-results/"

37
benchmarks/benchmark-plotters/plot-perf-enginelocation.py

@ -1,10 +1,11 @@
import os
import json
import pandas as pd
from pandas.core.ops import methods
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID"
x_label = "Copy Type"
y_label = "Throughput in GiB/s"
@ -13,24 +14,23 @@ types = ["intersock-n0ton4-1mib", "internode-n0ton1-1mib", "intersock-n0ton4-1gi
types_nice = ["Inter-Socket 1MiB", "Inter-Node 1MiB", "Inter-Socket 1GiB", "Inter-Node 1GiB"]
copy_methods = ["dstcopy", "srccopy", "xcopy", "srcoutsidercopy", "dstoutsidercopy", "sockoutsidercopy", "nodeoutsidercopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines", "Engine on SRC-Socket, not SRC-Node", "Engine on DST-Socket, not DST-Node", "Engine on different Socket", "Engine on same Socket"]
title = "Performance of Engine Location - Copy Operation on DDR with 1 Engine per WQ"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
title = \
"""Throughput showing impact of Engine Location\n
Copy Operation on DDR with 1 Engine per WQ"""
description = \
"""Throughput showing impact of Engine Location\n
Some Configurations missing as they are not feesible\n
Copy Operation on DDR with 1 Engine per WQ"""
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
index = [runid, x_label, var_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path,method_label):
with open(file_path, 'r') as file:
data = json.load(file)
@ -59,6 +59,11 @@ def load_time_mesurements(file_path,method_label):
"completion": data["list"][0]["report"]["time"]["completion"]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def create_copy_dataset(file_path, method_label, type_label):
method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index]
@ -80,6 +85,10 @@ def create_copy_dataset(file_path, method_label, type_label):
except FileNotFoundError:
return
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main():
folder_path = "benchmark-results/"

59
benchmarks/benchmark-plotters/plot-perf-peakthroughput.py

@ -2,34 +2,40 @@ import os
import json
import pandas as pd
from itertools import chain
from pandas.core.ops import methods
from typing import List
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput
runid = "Run ID"
x_label = "Destination Node"
y_label = "Source Node"
v_label = "Throughput"
title = "Copy Throughput in GiB/s tested for 1GiB Elements using all 8 DSA Chiplets"
title_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using all 8 DSA Chiplets available on the System"""
title_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket"""
description_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n
And using only the Source and Destination Nodes DSA for Inter-Socket"""
description_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 8 DSA Chiplets available on the System"""
index = [ runid, x_label, y_label]
data = []
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
@ -45,6 +51,10 @@ def load_time_mesurements(file_path):
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, src_node, dst_node):
data_size = 1024*1024*1024
@ -58,24 +68,31 @@ def process_file_to_dataset(file_path, src_node, dst_node):
return
def main():
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main(node_config,title):
folder_path = "benchmark-results/"
for src_node in range(16):
for dst_node in range(16):
file = os.path.join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-allnodes-1e.json")
file = os.path.join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-{node_config}-1e.json")
process_file_to_dataset(file, src_node, dst_node)
df = pd.DataFrame(data)
data.clear()
df.set_index(index, inplace=True)
data_pivot = df.pivot_table(index=y_label, columns=x_label, values=v_label)
plt.figure(figsize=(8, 6))
sns.heatmap(data_pivot, annot=True, cmap="YlGn", fmt=".0f")
sns.heatmap(data_pivot, annot=True, cmap="rocket_r", fmt=".0f")
plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-perf-allnodethroughput.png"), bbox_inches='tight')
plt.savefig(os.path.join(folder_path, f"plot-perf-{node_config}-throughput.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()
main("allnodes", title_allnodes)
main("smart", title_smartnodes)

41
benchmarks/benchmark-plotters/plot-perf-submitmethod.py

@ -1,11 +1,11 @@
import os
import json
import pandas as pd
from pandas.core.ops import methods
from typing import List
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID"
x_label = "Size of Submitted Task"
y_label = "Throughput in GiB/s"
@ -13,25 +13,26 @@ var_label = "Submission Type"
sizes = ["1kib", "4kib", "1mib", "32mib"]
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "32 MiB"]
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"]
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"]
title = "Optimal Submission Method - Copy Operation tested Intra-Node on DDR"
index = [runid, x_label, var_label]
data = []
types_nice = ["Batch 10", "Batch 50", "Multi-Submit 10", "Multi-Submit 50", "Single-Submit"]
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
title = \
"""Throughput showing Optimal Submission Method and Size\n
Copy Operation tested Intra-Node on DDR with 1 Engine per WQ"""
description = \
"""Throughput showing Optimal Submission Method and Size\n
Batch uses a Batch Descriptor of given Size\n
Multi-Submit fills the Work Queue with n Single Descriptors\n
Single-Submit submits one Descriptor and immediately waits\n
Copy Operation tested Intra-Node on DDR with 1 Engine per WQ"""
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
index = [runid, x_label, var_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path,type_label):
with open(file_path, 'r') as file:
data = json.load(file)
@ -54,6 +55,10 @@ def load_time_mesurements(file_path,type_label):
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, type_label,size_label):
type_index = index_from_element(type_label,types)
type_nice = types_nice[type_index]
@ -78,7 +83,9 @@ def process_file_to_dataset(file_path, type_label,size_label):
return
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main():
folder_path = "benchmark-results/"

BIN
benchmarks/benchmark-results/plot-opt-submitmethod.png

Before

Width: 622  |  Height: 453  |  Size: 34 KiB

After

Width: 594  |  Height: 488  |  Size: 39 KiB

BIN
benchmarks/benchmark-results/plot-perf-allnodes-throughput.png

After

Width: 649  |  Height: 580  |  Size: 105 KiB

BIN
benchmarks/benchmark-results/plot-perf-allnodethroughput.png

Before

Width: 652  |  Height: 453  |  Size: 98 KiB

BIN
benchmarks/benchmark-results/plot-perf-enginelocation.png

Before

Width: 687  |  Height: 453  |  Size: 39 KiB

After

Width: 563  |  Height: 488  |  Size: 40 KiB

BIN
benchmarks/benchmark-results/plot-perf-mtsubmit.png

Before

Width: 655  |  Height: 453  |  Size: 30 KiB

After

Width: 563  |  Height: 522  |  Size: 37 KiB

BIN
benchmarks/benchmark-results/plot-perf-smart-throughput.png

After

Width: 684  |  Height: 580  |  Size: 120 KiB

BIN
benchmarks/benchmark-results/plot-perf-smartthroughput.png

Before

Width: 943  |  Height: 453  |  Size: 116 KiB

Loading…
Cancel
Save