From 69aec6fa48108af9de03ca6964e7140e412416e5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Constantin=20F=C3=BCrst?= Date: Wed, 7 Feb 2024 04:26:16 +0100 Subject: [PATCH] add plotter for the results of qdp which turns them into a donut-graph --- qdp_project/plotter.py | 77 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 qdp_project/plotter.py diff --git a/qdp_project/plotter.py b/qdp_project/plotter.py new file mode 100644 index 0000000..a7f50f4 --- /dev/null +++ b/qdp_project/plotter.py @@ -0,0 +1,77 @@ +import os +import csv +import numpy as np +import seaborn as sns +import matplotlib.pyplot as plt + +output_path = "./plots" +prefetch_result = "./evaluation-results/qdp-xeonmax-simple-prefetch-tca4-tcb1-tcj2-tmul8-wl4294967296-cs8388608.csv" +dram_result = "./evaluation-results/qdp-xeonmax-simple-dram-tca2-tcb0-tcj1-tmul16-wl4294967296-cs2097152.csv" + +tt_name = "rt-ns" +function_names = [ "scana-run", "scana-load", "scanb-run", "aggrj-run", "aggrj-load" ] +fn_nice = [ "Scan A, Filter", "Scan A, Load", "Scan B", "Aggregate, Project + Sum", "Aggregate, Load" ] + +def read_timings_from_csv(fname) -> tuple[list[float], list[str]]: + t = {} + total_time = 0 + + # Read data from CSV file + with open(fname, newline='') as csvfile: + reader = csv.DictReader(csvfile, delimiter=';') + for row in reader: + total_time += int(row[tt_name]) + for i in range(len(function_names)): + t[fn_nice[i]] = t.get(fn_nice[i], 0) + int(row[function_names[i]]) + + t = {key: value * 100 / total_time for key, value in t.items() if value != 0} + + total = sum(list(t.values())) + if total < 100.0: + t["Waiting / Other"] = 100.0 - total + + return list(t.values()), list(t.keys()) + + +def get_data_prefetch_cache_access() -> tuple[list[float], list[str]]: + total = 1.14 + data = [ 0.05, 0.02, 0.17, 0.40, 0.36, 0.13 ] + data = [ x * 100 / total for x in data ] + keys = ["Cache::GetCacheNode", "Cache::GetFromCache", "dml::handler::constructor", "Cache::AllocOnNode", "dml::make_task", "dml::submit"] + + return data,keys + +def get_data_prefetch_total() -> tuple[list[float], list[str]]: + return read_timings_from_csv(prefetch_result) + +def get_data_dram_total() -> tuple[list[float], list[str]]: + return read_timings_from_csv(dram_result) + +# loops over all possible configuration combinations and calls +# process_file_to_dataset for them in order to build a dataframe +# which is then displayed and saved +def main(data: tuple[list[float], list[str]], fname): + palette_color = sns.color_palette('mako') + fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) + + wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), startangle=-40, colors=palette_color) + + bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) + kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") + + for i, p in enumerate(wedges): + ang = (p.theta2 - p.theta1)/2. + p.theta1 + y = np.sin(np.deg2rad(ang)) + x = np.cos(np.deg2rad(ang)) + horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] + connectionstyle = f"angle,angleA=0,angleB={ang}" + kw["arrowprops"].update({"connectionstyle": connectionstyle}) + ax.annotate(f"{data[1][i]} - {data[0][i]:2.1f}%", xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw) + + fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') + + +if __name__ == "__main__": + main(get_data_prefetch_cache_access(), "plot-timing-prefetch-cacheaccess.pdf") + main(get_data_prefetch_total(), "plot-timing-prefetch-totalexec.pdf") + main(get_data_dram_total(), "plot-timing-dram-totalexec.pdf")