Browse Source

remove plotters which are not in use anymore

master
Constantin Fürst 11 months ago
parent
commit
875098b258
  1. 112
      benchmarks/benchmark-plotters/plot-perf-enginelocation.py
  2. 111
      benchmarks/benchmark-plotters/plot-perf-peakthroughput.py

112
benchmarks/benchmark-plotters/plot-perf-enginelocation.py

@ -1,112 +0,0 @@
import os
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID"
x_label = "Copy Type"
y_label = "Throughput in GiB/s"
var_label = "Configuration"
types = ["intersock-n0ton4-1mib", "internode-n0ton1-1mib", "intersock-n0ton4-1gib", "internode-n0ton1-1gib"]
types_nice = ["Inter-Socket 1MiB", "Inter-Node 1MiB", "Inter-Socket 1GiB", "Inter-Node 1GiB"]
copy_methods = ["dstcopy", "srccopy", "xcopy", "srcoutsidercopy", "dstoutsidercopy", "sockoutsidercopy", "nodeoutsidercopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines", "Engine on SRC-Socket, not SRC-Node", "Engine on DST-Socket, not DST-Node", "Engine on different Socket", "Engine on same Socket"]
title = \
"""Throughput showing impact of Engine Location\n
Copy Operation on DDR with 1 Engine per WQ"""
description = \
"""Throughput showing impact of Engine Location\n
Some Configurations missing as they are not feesible\n
Copy Operation on DDR with 1 Engine per WQ"""
index = [runid, x_label, var_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path,method_label):
with open(file_path, 'r') as file:
data = json.load(file)
iterations = data["list"][0]["task"]["iterations"]
if method_label == "xcopy":
# xcopy runs on two engines that both copy 1/2 of the entire
# specified size of 1gib, therefore the maximum time between
# these two is going to be the total time for copy
time0 = data["list"][0]["report"]["time"]
time1 = data["list"][1]["report"]["time"]
return {
"total": max(time0["total"],time1["total"]) / iterations,
"combined" : [max(x,y) for x,y in zip(time0["combined"], time1["combined"])],
"submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])],
"submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])],
}
else:
return {
"total": data["list"][0]["report"]["time"]["total"] / iterations,
"combined": data["list"][0]["report"]["time"]["combined"],
"submission": data["list"][0]["report"]["time"]["submission"],
"completion": data["list"][0]["report"]["time"]["completion"]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def create_copy_dataset(file_path, method_label, type_label):
method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index]
type_index = index_from_element(type_label, types)
type_nice = types_nice[type_index]
data_size = 0
if type_label in ["internode-n0ton1-1gib", "intersock-n0ton4-1gib"]: data_size = 1024*1024*1024
elif type_label in ["internode-n0ton1-1mib", "intersock-n0ton4-1mib"]: data_size = 1024 * 1024
else: data_size = 0
try:
run_idx = 0
time = [load_time_mesurements(file_path,method_label)["total"]]
for t in time:
data.append({ runid : run_idx, x_label: type_nice, var_label : method_nice, y_label : calc_throughput(data_size, t)})
run_idx = run_idx + 1
except FileNotFoundError:
return
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main():
result_path = "benchmark-results/"
output_path = "benchmark-plots/"
for method_label in copy_methods:
for type_label in types:
file = os.path.join(result_path, f"{method_label}-{type_label}-1e.json")
create_copy_dataset(file, method_label, type_label)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(output_path, "plot-perf-enginelocation.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()

111
benchmarks/benchmark-plotters/plot-perf-peakthroughput.py

@ -1,111 +0,0 @@
import os
import json
import pandas as pd
from itertools import chain
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput
result_path = "benchmark-results/"
output_path = "benchmark-plots/"
runid = "Run ID"
x_label = "Destination Node"
y_label = "Source Node"
v_label = "Throughput"
title_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using all 8 DSA Chiplets available on the System"""
title_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket"""
title_difference = \
"""Gain in Copy Throughput in GiB/s of All-DSA vs. Smart Assignment"""
description_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n
And using only the Source and Destination Nodes DSA for Inter-Socket"""
description_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 8 DSA Chiplets available on the System"""
index = [ runid, x_label, y_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
count = data["count"]
batch_size = data["list"][0]["task"]["batching"]["batch_size"] if data["list"][0]["task"]["batching"]["batch_size"] > 0 else 1
iterations = data["list"][0]["task"]["iterations"]
return {
"size": data["list"][0]["task"]["size"],
"total": sum([x / (iterations * batch_size * count * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]),
"combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))],
"submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))],
"completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, src_node, dst_node):
try:
file_data = load_time_mesurements(file_path)
time = [file_data["total"]]
run_idx = 0
for t in time:
data.append({ runid : run_idx, x_label : dst_node, y_label : src_node, v_label: calc_throughput(file_data["size"], t)})
run_idx = run_idx + 1
except FileNotFoundError:
return
def plot_heatmap(table,title,node_config):
plt.figure(figsize=(8, 6))
sns.heatmap(table, annot=True, cmap="rocket_r", fmt=".0f")
plt.title(title)
plt.savefig(os.path.join(output_path, f"plot-perf-{node_config}-throughput.png"), bbox_inches='tight')
plt.show()
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main(node_config,title):
for src_node in range(16):
for dst_node in range(16):
size = "512mib" if node_config == "allnodes" and src_node == dst_node and src_node >= 8 else "1gib"
file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-{size}-{node_config}-1e.json")
process_file_to_dataset(file, src_node, dst_node)
df = pd.DataFrame(data)
data.clear()
df.set_index(index, inplace=True)
data_pivot = df.pivot_table(index=y_label, columns=x_label, values=v_label)
plot_heatmap(data_pivot, title, node_config)
return data_pivot
if __name__ == "__main__":
dall = main("allnodes", title_allnodes)
dsmart = main("smart", title_smartnodes)
ddiff = dall - dsmart
plot_heatmap(ddiff,title_difference,"diff")
Loading…
Cancel
Save