|
@ -11,7 +11,7 @@ runid = "Run ID" |
|
|
x_label = "Destination Node" |
|
|
x_label = "Destination Node" |
|
|
y_label = "Source Node" |
|
|
y_label = "Source Node" |
|
|
v_label = "Throughput" |
|
|
v_label = "Throughput" |
|
|
title = "Copy Throughput for 1GiB Elements running on SRC Node" |
|
|
|
|
|
|
|
|
title = "Copy Throughput in GiB/s tested for 1GiB Elements using all 8 DSA Chiplets" |
|
|
|
|
|
|
|
|
index = [ runid, x_label, y_label] |
|
|
index = [ runid, x_label, y_label] |
|
|
data = [] |
|
|
data = [] |
|
@ -34,11 +34,11 @@ def load_time_mesurements(file_path): |
|
|
with open(file_path, 'r') as file: |
|
|
with open(file_path, 'r') as file: |
|
|
data = json.load(file) |
|
|
data = json.load(file) |
|
|
count = data["count"] |
|
|
count = data["count"] |
|
|
batch_size = 8 |
|
|
|
|
|
|
|
|
batch_size = data["list"][0]["task"]["batching"]["batch_size"] if data["list"][0]["task"]["batching"]["batch_size"] > 0 else 1 |
|
|
iterations = data["list"][0]["task"]["iterations"] |
|
|
iterations = data["list"][0]["task"]["iterations"] |
|
|
|
|
|
|
|
|
return { |
|
|
return { |
|
|
"total": sum([x / (iterations * batch_size * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]), |
|
|
|
|
|
|
|
|
"total": sum([x / (iterations * batch_size * count * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]), |
|
|
"combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], |
|
|
"combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], |
|
|
"submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], |
|
|
"submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], |
|
|
"completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] |
|
|
"completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] |
|
@ -63,7 +63,7 @@ def main(): |
|
|
|
|
|
|
|
|
for src_node in range(16): |
|
|
for src_node in range(16): |
|
|
for dst_node in range(16): |
|
|
for dst_node in range(16): |
|
|
file = os.path .join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-4e.json") |
|
|
|
|
|
|
|
|
file = os.path.join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-allnodes-1e.json") |
|
|
process_file_to_dataset(file, src_node, dst_node) |
|
|
process_file_to_dataset(file, src_node, dst_node) |
|
|
|
|
|
|
|
|
df = pd.DataFrame(data) |
|
|
df = pd.DataFrame(data) |
|
@ -73,7 +73,7 @@ def main(): |
|
|
sns.heatmap(data_pivot, annot=True, cmap="YlGn", fmt=".0f") |
|
|
sns.heatmap(data_pivot, annot=True, cmap="YlGn", fmt=".0f") |
|
|
|
|
|
|
|
|
plt.title(title) |
|
|
plt.title(title) |
|
|
plt.savefig(os.path.join(folder_path, "plot-perf-peakthroughput.png"), bbox_inches='tight') |
|
|
|
|
|
|
|
|
plt.savefig(os.path.join(folder_path, "plot-perf-allnodethroughput.png"), bbox_inches='tight') |
|
|
plt.show() |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|