diff --git a/benchmarks/benchmark-plotters/plot-cost-mtsubmit.py b/benchmarks/benchmark-plotters/plot-cost-mtsubmit.py index dc97804..0e874b5 100644 --- a/benchmarks/benchmark-plotters/plot-cost-mtsubmit.py +++ b/benchmarks/benchmark-plotters/plot-cost-mtsubmit.py @@ -1,28 +1,26 @@ import os import json import pandas as pd -from pandas.core.ops import methods +from itertools import chain import seaborn as sns import matplotlib.pyplot as plt -x_label = "Copy Type" +runid = "Run ID" +x_label = "Thread Count" y_label = "Throughput in GiB/s" var_label = "Thread Counts" thread_counts = ["1t", "2t", "4t", "8t", "12t"] thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"] engine_counts = ["1e", "4e"] engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"] -title = "Performance of Multi-Threaded Submit - Copy Operation Intra-Node on DDR with Size 1 MiB" +title = "Throughput per Thread - Copy Operation Intra-Node on DDR with Size 1 MiB" -data = { - x_label : thread_counts_nice, - engine_counts_nice[0] : [], - engine_counts_nice[1] : [], -} +index = [runid, x_label, var_label] +data = [] def calc_throughput(size_bytes,time_microseconds): - time_seconds = time_microseconds * 1e-6 + time_seconds = time_microseconds * 1e-9 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs @@ -34,55 +32,59 @@ def index_from_element(value,array): return 0 -# Function to load and process the JSON file for the multi-threaded benchmark -def load_and_process_mt_json(file_path): +def load_and_process_copy_json(file_path): with open(file_path, 'r') as file: data = json.load(file) - - # Extracting count from JSON structure + count = data["count"] - # Extracting time from JSON structure for elements 0 to count - times = [data["list"][i]["report"]["time"]["combined_avg"] for i in range(count)] - - # Calculating the average of times - average_time = sum(times) / count - - return average_time - + return { + "combined" : list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)])), + "submission" : list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)])), + "completion" : list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)])) + } # Function to plot the graph for the new benchmark -def plot_mt_graph(file_paths, engine_label): +def create_mtsubmit_dataset(file_paths, engine_label): times = [] - for file_path in file_paths: - # Load and process JSON file for the new benchmark - time_microseconds = load_and_process_mt_json(file_path) - times.append(time_microseconds) - engine_index = index_from_element(engine_label,engine_counts) engine_nice = engine_counts_nice[engine_index] - throughput = [calc_throughput(1024*1024, t) for t in times] + idx = 0 + for file_path in file_paths: + time = load_and_process_copy_json(file_path) + times.append(time["combined"]) + idx = idx + 1 + + throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times] - data[engine_nice] = throughput + idx = 0 + for run_set in throughput: + run_idx = 0 + for run in run_set: + data.append({ runid : run_idx, x_label: thread_counts_nice[idx], var_label : engine_nice, y_label : throughput[idx][run_idx]}) + run_idx = run_idx + 1 + idx = idx + 1 # Main function to iterate over files and create plots for the new benchmark def main(): - folder_path = "benchmark-results/mtsubmit-bench/" # Replace with the actual path to your folder + folder_path = "benchmark-results/" # Replace with the actual path to your folder for engine_label in engine_counts: mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts] - plot_mt_graph(mt_file_paths, engine_label) + create_mtsubmit_dataset(mt_file_paths, engine_label) df = pd.DataFrame(data) - dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label) + df.set_index(index, inplace=True) + + sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd") - sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis") plt.title(title) plt.savefig(os.path.join(folder_path, "plot-cost-mtsubmit.png"), bbox_inches='tight') plt.show() + if __name__ == "__main__": - main() \ No newline at end of file + main() diff --git a/benchmarks/benchmark-plotters/plot-perf-enginelocation.py b/benchmarks/benchmark-plotters/plot-perf-enginelocation.py index d855dd0..bc90cb7 100644 --- a/benchmarks/benchmark-plotters/plot-perf-enginelocation.py +++ b/benchmarks/benchmark-plotters/plot-perf-enginelocation.py @@ -5,6 +5,7 @@ from pandas.core.ops import methods import seaborn as sns import matplotlib.pyplot as plt +runid = "Run ID" x_label = "Copy Type" y_label = "Throughput in GiB/s" var_label = "Configuration" @@ -12,18 +13,13 @@ types = ["intersock-n0ton4", "internode-n0ton1"] types_nice = ["Inter-Socket Copy", "Inter-Node Copy"] copy_methods = ["dstcopy", "srccopy", "xcopy"] copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines" ] -title = "Performance of Engine Location - Copy Operation on DDR with Size 1 MiB" - -data = { - x_label : types_nice, - copy_methods_nice[0] : [], - copy_methods_nice[1] : [], - copy_methods_nice[2] : [] -} +title = "Performance of Engine Location - Copy Operation on DDR with Size 1 MiB and 1 Engine per WQ" +index = [runid, x_label, var_label] +data = [] def calc_throughput(size_bytes,time_microseconds): - time_seconds = time_microseconds * 1e-6 + time_seconds = time_microseconds * 1e-9 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs @@ -35,57 +31,65 @@ def index_from_element(value,array): return 0 -# Function to load and process the JSON file for the new benchmark -def load_and_process_copy_json(file_path, method_label): +def load_and_process_copy_json(file_path,method_label): with open(file_path, 'r') as file: data = json.load(file) - + # Extracting time from JSON structure if method_label == "xcopy": - # For xcopy method, add times from two entries and divide by 4 - time_entry1 = data["list"][0]["report"]["time"]["combined_avg"] - time_entry2 = data["list"][1]["report"]["time"]["combined_avg"] - time_microseconds = (time_entry1 + time_entry2) / 4 - else: - # For other methods, use the time from the single entry - time_microseconds = data["list"][0]["report"]["time"]["combined_avg"] + # For xcopy method, add times from two entries and divide by 3 + time0 = data["list"][0]["report"]["time"] + time1 = data["list"][1]["report"]["time"] - return time_microseconds + return { + "combined" : [sum(x) / 4 for x in zip(time0["combined"], time1["combined"])], + "submission" : [sum(x) / 4 for x in zip(time0["completion"], time1["completion"])], + "completion" : [sum(x) / 4 for x in zip(time0["submission"], time1["submission"])] + } + else: + return data["list"][0]["report"]["time"] # Function to plot the graph for the new benchmark -def plot_copy_graph(file_paths, method_label): +def create_copy_dataset(file_paths, method_label): times = [] - for file_path in file_paths: - # Load and process JSON file for the new benchmark - time_microseconds = load_and_process_copy_json(file_path, method_label) - times.append(time_microseconds) - method_index = index_from_element(method_label,copy_methods) method_nice = copy_methods_nice[method_index] - throughput = [calc_throughput(1024*1024, t) for t in times] + idx = 0 + for file_path in file_paths: + time = load_and_process_copy_json(file_path,method_label) + times.append(time["combined"]) + idx = idx + 1 - data[method_nice] = throughput + throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times] + idx = 0 + for run_set in throughput: + run_idx = 0 + for run in run_set: + data.append({ runid : run_idx, x_label: types_nice[idx], var_label : method_nice, y_label : throughput[idx][run_idx]}) + run_idx = run_idx + 1 + idx = idx + 1 # Main function to iterate over files and create plots for the new benchmark def main(): - folder_path = "benchmark-results/cross-copy-bench/" # Replace with the actual path to your folder - + folder_path = "benchmark-results/" for method_label in copy_methods: - copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-4e.json") for type_label in types] - plot_copy_graph(copy_file_paths, method_label) + copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-1e.json") for type_label in types] + create_copy_dataset(copy_file_paths, method_label) df = pd.DataFrame(data) - dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label) + df.set_index(index, inplace=True) + df = df.sort_values(y_label) + + sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd") - sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis") plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"), bbox_inches='tight') plt.show() if __name__ == "__main__": - main() \ No newline at end of file + main() diff --git a/benchmarks/benchmark-plotters/plot-perf-mtsubmit.py b/benchmarks/benchmark-plotters/plot-perf-mtsubmit.py new file mode 100644 index 0000000..610e094 --- /dev/null +++ b/benchmarks/benchmark-plotters/plot-perf-mtsubmit.py @@ -0,0 +1,90 @@ +import os +import json +import pandas as pd +from itertools import chain +import seaborn as sns +import matplotlib.pyplot as plt + +runid = "Run ID" +x_label = "Thread Count" +y_label = "Throughput in GiB/s" +var_label = "Thread Counts" +thread_counts = ["1t", "2t", "4t", "8t", "12t"] +thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"] +engine_counts = ["1e", "4e"] +engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"] +title = "Combined Throughput - Copy Operation Intra-Node on DDR with Size 1 MiB" + +index = [runid, x_label, var_label] +data = [] + + +def calc_throughput(size_bytes,time_microseconds): + time_seconds = time_microseconds * 1e-9 + size_gib = size_bytes / (1024 ** 3) + throughput_gibs = size_gib / time_seconds + return throughput_gibs + + +def index_from_element(value,array): + for (idx,val) in enumerate(array): + if val == value: return idx + return 0 + + +def load_and_process_copy_json(file_path): + with open(file_path, 'r') as file: + data = json.load(file) + + count = data["count"] + + return { + "combined" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], + "submission" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], + "completion" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] + } + +# Function to plot the graph for the new benchmark +def create_mtsubmit_dataset(file_paths, engine_label): + times = [] + + engine_index = index_from_element(engine_label,engine_counts) + engine_nice = engine_counts_nice[engine_index] + + idx = 0 + for file_path in file_paths: + time = load_and_process_copy_json(file_path) + times.append(time["combined"]) + idx = idx + 1 + + throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times] + + idx = 0 + for run_set in throughput: + run_idx = 0 + for run in run_set: + data.append({ runid : run_idx, x_label: thread_counts_nice[idx], var_label : engine_nice, y_label : throughput[idx][run_idx]}) + run_idx = run_idx + 1 + idx = idx + 1 + + +# Main function to iterate over files and create plots for the new benchmark +def main(): + folder_path = "benchmark-results/" # Replace with the actual path to your folder + + for engine_label in engine_counts: + mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts] + create_mtsubmit_dataset(mt_file_paths, engine_label) + + df = pd.DataFrame(data) + df.set_index(index, inplace=True) + + sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd") + + plt.title(title) + plt.savefig(os.path.join(folder_path, "plot-perf-mtsubmit.png"), bbox_inches='tight') + plt.show() + + +if __name__ == "__main__": + main() diff --git a/benchmarks/benchmark-plotters/plot-perf-submitmethod.py b/benchmarks/benchmark-plotters/plot-perf-submitmethod.py index c7444d2..c2381bd 100644 --- a/benchmarks/benchmark-plotters/plot-perf-submitmethod.py +++ b/benchmarks/benchmark-plotters/plot-perf-submitmethod.py @@ -20,7 +20,7 @@ index = [runid, x_label, var_label] data = [] def calc_throughput(size_bytes,time_microseconds): - time_seconds = time_microseconds * 1e-6 + time_seconds = time_microseconds * 1e-9 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs @@ -35,16 +35,11 @@ def index_from_element(value,array): def load_and_process_submit_json(file_path): with open(file_path, 'r') as file: data = json.load(file) - time = { - "combined" : data["list"][0]["report"]["time"]["combined"], - "submit" : data["list"][0]["report"]["time"]["submission"], - "complete" : data["list"][0]["report"]["time"]["completion"] - } + return data["list"][0]["report"]["time"] - return time # Function to plot the graph for the new benchmark -def plot_submit_graph(file_paths, type_label): +def create_submit_dataset(file_paths, type_label): times = [] type_index = index_from_element(type_label,types) @@ -68,7 +63,7 @@ def plot_submit_graph(file_paths, type_label): times[2] = [t / (1024) for t in times[2]] times[3] = [t / (32*1024) for t in times[3]] - throughput = [[calc_throughput(1000*1000,time) for time in t] for t in times] + throughput = [[calc_throughput(1024,time) for time in t] for t in times] idx = 0 for run_set in throughput: @@ -85,7 +80,7 @@ def main(): for type_label in types: file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] - plot_submit_graph(file_paths, type_label) + create_submit_dataset(file_paths, type_label) df = pd.DataFrame(data) df.set_index(index, inplace=True) diff --git a/benchmarks/benchmark-results/plot-perf-submitmethod.png b/benchmarks/benchmark-results/plot-perf-submitmethod.png index 9775690..87c5e8a 100644 Binary files a/benchmarks/benchmark-results/plot-perf-submitmethod.png and b/benchmarks/benchmark-results/plot-perf-submitmethod.png differ