Browse Source

use 12 threads for each brute benchmark

master
Constantin Fürst 11 months ago
parent
commit
f2059d4d47
  1. 722
      benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton11-1gib-allnodes-cpu.json
  2. 1262
      benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton12-1gib-allnodes-cpu.json
  3. 1262
      benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton15-1gib-allnodes-cpu.json
  4. 110
      benchmarks/benchmark-plotters/plot-perf-peakthroughput-cpu-bar.py

722
benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton11-1gib-allnodes-cpu.json

@ -1,5 +1,5 @@
{ {
"count": 48,
"count": 12,
"list": [ "list": [
{ {
"affinity": { "affinity": {
@ -180,726 +180,6 @@
"iterations": 10, "iterations": 10,
"size": 1073741824 "size": 1073741824
} }
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 1
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 2
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 3
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
},
{
"affinity": {
"nnode_dst": 11,
"nnode_src": 0,
"node": 4
},
"task": {
"batching": {
"batch_size": 0,
"batch_submit": false
},
"iterations": 10,
"size": 1073741824
}
} }
], ],
"path": "sw" "path": "sw"

1262
benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton12-1gib-allnodes-cpu.json
File diff suppressed because it is too large
View File

1262
benchmarks/benchmark-descriptors/peak-perf-brute-cpu/copy-n0ton15-1gib-allnodes-cpu.json
File diff suppressed because it is too large
View File

110
benchmarks/benchmark-plotters/plot-perf-peakthroughput-cpu-bar.py

@ -0,0 +1,110 @@
import os
import json
import pandas as pd
from itertools import chain
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput
result_path = "benchmark-results/"
output_path = "benchmark-plots/"
runid = "Run ID"
x_label = "Destination Node"
y_label = "Throughput in GiB/s"
title_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using all 8 DSA Chiplets available on the System"""
title_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket"""
title_difference = \
"""Gain in Copy Throughput in GiB/s of All-DSA vs. Smart Assignment"""
description_smartnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n
And using only the Source and Destination Nodes DSA for Inter-Socket"""
description_allnodes = \
"""Copy Throughput in GiB/s tested for 1GiB Elements\n
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n
Using all 8 DSA Chiplets available on the System"""
index = [ runid, x_label, y_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
count = data["count"]
batch_size = data["list"][0]["task"]["batching"]["batch_size"] if data["list"][0]["task"]["batching"]["batch_size"] > 0 else 1
iterations = data["list"][0]["task"]["iterations"]
return {
"size": data["list"][0]["task"]["size"],
"total": sum([x / (iterations * batch_size * count * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]),
"combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))],
"submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))],
"completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def process_file_to_dataset(file_path, src_node, dst_node):
try:
file_data = load_time_mesurements(file_path)
time = file_data["combined"]
run_idx = 0
for t in time:
size = file_data["size"]
tp = calc_throughput(size, t)
data.append({ runid : run_idx, x_label : dst_node, y_label : tp})
run_idx = run_idx + 1
except FileNotFoundError:
return
def plot_bar(table,title,node_config):
plt.figure(figsize=(8, 6))
sns.barplot(x=x_label, y=y_label, data=table, palette="rocket", errorbar=None)
plt.ylim(0, 100)
plt.savefig(os.path.join(output_path, f"plot-perf-{node_config}-cpu-throughput-selectbarplot.pdf"), bbox_inches='tight')
plt.show()
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main(node_config,title):
src_node = 0
for dst_node in {8,11,12,15}:
size = "512mib" if node_config == "allnodes" and src_node == dst_node and src_node >= 8 else "1gib"
file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-{size}-{node_config}-cpu-1e.json")
process_file_to_dataset(file, src_node, dst_node)
df = pd.DataFrame(data)
data.clear()
df.set_index(index, inplace=True)
plot_bar(df, title, node_config)
return df
if __name__ == "__main__":
dall = main("allnodes", title_allnodes)
dsmart = main("smart", title_smartnodes)
Loading…
Cancel
Save