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Abstract

• This bachelor’s thesis delves into the evolving landscape of heterogeneous memory
systems, marked by advancements in main memory technologies such as Non-
Volatile RAM (NVRAM), High Bandwidth Memory (HBM), NUMA, and Remote
Memory. These systems, characterized by diverse non-functional memory properties,
demand strategic data location choices for optimal performance.

• Due to size restrictions or other factors, data therefore has to be copied between
these different storage tiers. A key challenge arises during data copying, where
the CPU is predominantly occupied with waiting for the main memory, hindering
parallel computations. In response, Intel introduces the Intel Data Streaming
Accelerator (Intel DSA), which offloads data movement operations from the CPU,
presenting an avenue for enhanced efficiency in data-intensive applications.

• The primary goal of this thesis is a comprehensive analysis and characterization of
the architecture and performance of Intel DSA, along with the application of the
DSA to a domain specific prefetching methodology for accelerating databases in
these heterogeneous systems.
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1 Introduction

• Provide an overview of the challenges posed by Non-Uniform Memory Architectures
(NUMA) with diverse non-functional properties, such as varying throughput, in
modern hardware design.

• Introduce the Intel Data Streaming Accelerator (Intel DSA) and its role in optim-
izing streaming data movement operations for various applications.

• Explain the concept of Query Driven Prefetching (Query-driven Prefetching (QdP))
and its significance in optimizing database performance through intelligent prefetch-
ing.

• Clearly state the main objectives of thesis, emphasizing the analysis and character-
ization of the Intel DSA architecture, and application of dsa to qdp

• Outline the primary contributions of the work, including the implementation of a
cache within QdP, the performance and analysis of microbenchmarks

• Emphasize the significance of these contributions in addressing the challenges of
prefetching in a heterogeneous memory system and providing practical insights for
other researchers and developers.

• Provide an overview of the structure, outlining the main sections and their respective
content.
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2 Technical Background

This chapter introduces the relevant technologies and concepts for this thesis. The
goal of this thesis is to apply the Intel Data Streaming Accelerator to the concept of
Query-driven Prefetching, therefore we will familiarize ourselves with both of these terms.
We also give background on High Bandwidth Memory, which is a secondary memory
technology to the DDR-SDRAM used in current computers.

2.1 High Bandwidth Memory
High Bandwidth Memory is an emerging memory technology that promises an increase
in peak bandwidth. It consists of stacked DDR-SDRAM dies [1, p. 1] and is gradually
being integrated into server processors, with the Intel® Xeon® Max Series [2] being one
recent example. High Bandwidth Memory (HBM) on these systems can be configured in
different memory modes, most notably, HBM Flat Mode and HBM Cache Mode [2]. The
former gives applications direct control, requiring code changes, while the latter utilizes
the HBM as a cache for the system’s DDR-SDRAM-based main memory [2].

2.2 Query-driven Prefetching

(b) Query Execution Pipeline(a) SQL Query

SELECT sum(b)
FROM r
WHERE a < 50

SCANa

σa<50 (FILTER)

PROJECTb←a

SCANb

Gsum(b)

Figure 2.1: Illustration of a simple query in (a) and the corresponding pipeline in (b).
[3, Fig. 1]

QdP introduces a targeted strategy for optimizing database performance by intelligently
prefetching relevant data. To achieve this, QdP analyses queries, splitting them into
distinct sub-tasks, resulting in the so-called query execution plan. An example of a query

3
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and a corresponding plan is depicted in Figure 2.1. From this plan, QdP determines
columns in the database used in subsequent tasks. Once identified, the system proactively
copies these columns into faster memory during the execution of the pipeline. For the
example (Figure 2.1), column b is accessed in SCANb and Gsum(b) and column a is only
accessed for SCANa. Therefore, only column b will be chosen for prefetching in this
scenario. [3]

2.3 Intel Data Streaming Accelerator

Intel DSA is a high-performance data copy and transformation accelerator
that will be integrated in future Intel® processors, targeted for optimizing
streaming data movement and transformation operations common with ap-
plications for high-performance storage, networking, persistent memory, and
various data processing applications. [4, Ch. 1]

Introduced with the 4th generation of Intel Xeon Scalable Processors, the DSA aims to
relieve the CPU from ‘common storage functions and operations such as data integrity
checks and deduplication’ [5, p. 4]. To fully utilize the hardware, a thorough understand-
ing of its workings is essential. Therefore, we present an overview of the architecture,
software, and the interaction of these two components, delving into the architectural
details of the DSA itself. All statements are based on Chapter 3 of the Architecture
Specification by Intel.

2.3.1 Hardware Architecture

The DSA chip is directly integrated into the processor and attaches via the I/O fabric
interface, serving as the conduit for all communication. Through this interface, the DSA
is accessible as a PCIe device. Consequently, configuration utilizes memory-mapped
registers set in the devices Base Address Register (BAR). Through these registers, the
devices’ layout is defined and memory pages for work submission set. In a system with
multiple processing nodes, there may also be one DSA per node, resulting in up to
four DSA devices per socket in 4th generation Intel Xeon Processors [7, Sec. 3.1.1]. To
accommodate various use cases, the layout of the DSA is software-defined. The structure
comprises three components, which we will describe in detail. We also briefly explain
how the DSA resolves virtual addresses and signals operation completion. At last, we
will detail operation execution ordering.

2.3.1.1 Architectural Components

Component I, Work Queue: Work Queue (WQ)s provide the means to submit tasks
to the device and will be described in more detail shortly. They are marked yellow in
Figure 2.2. A WQ is accessible through so-called portals, light blue in Figure 2.2, which
are mapped memory regions. Submission of work is done by writing a descriptor to
one of these. A descriptor is 64 bytes in size and may contain one specific task (task
descriptor) or the location of a task array in memory (batch descriptor). Through these
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Figure 2.2: Intel Data Streaming Accelerator Internal Architecture. Shows the compon-
ents that the chip is made up of, how they are connected and which outside
components the DSA communicates with. [6, Fig. 1 (a)]

portals, the submitted descriptor reaches a queue. There are two possible queue types
with different submission methods and use cases. The Shared Work Queue (SWQ) is
intended to provide synchronized access to multiple processes and each group may only
have one attached. A PCIe Deferrable Memory Write Request (DMR), which guarantees
implicit synchronization, is generated via x86 Instruction ENQCMD and communicates
with the device before writing [4, Sec. 3.3.1]. This may result in higher submission cost,
compared to the Dedicated Work Queue (DWQ) to which a descriptor is submitted via
x86 Instruction MOVDIR64B [4, Sec. 3.3.2].

Component II, Engine: An Engine is the processing-block that connects to memory
and performs the described task. To handle the different descriptors, each Engine has two
internal execution paths. One for a task and the other for a batch descriptor. Processing
a task descriptor is straightforward, as all information required to complete the operation
are contained within [4, Sec. 3.2]. For a batch, the DSA reads the batch descriptor, then
fetches all task descriptors from memory and processes them [4, Sec. 3.8]. An Engine
can coordinate with the operating system in case it encounters a page fault, waiting on
its resolution, if configured to do so, while otherwise, an error will be generated in this
scenario [4, Sec. 2.2, Block on Fault].

Component III, Groups: Groups tie Engines and Work Queues together, indicated
by the dotted blue line around the components of Group 0 in Figure 2.2. This means, that
tasks from one WQ may be processed from multiple Engines and vice-versa, depending
on the configuration. This flexibility is achieved through the Group Arbiter, represented
by the orange block in Figure 2.2, which connects the two components according to the
user-defined configuration.
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2.3.1.2 Virtual Address Resolution

An important aspect of modern computer systems is the separation of address spaces
through virtual memory. Therefore, the DSA must handle address translation because
a process submitting a task will not know the physical location in memory, causing
the descriptor to contain virtual addresses. To resolve these to physical addresses, the
Engine communicates with the Input/Output Memory Management Unit (IOMMU) to
perform this operation, as visible in the outward connections at the top of Figure 2.2.
Knowledge about the submitting processes is required for this resolution. Therefore,
each task descriptor has a field for the Process Address Space ID (PASID) which is filled
by the ENQCMD instruction for a SWQ [4, Sec. 3.3.1] or set statically after a process is
attached to a DWQ [4, Sec. 3.3.2].

2.3.1.3 Completion Signalling

The status of an operation on the DSA is available in the form of a record, which is
written to a memory location specified in the task descriptor. Applications can check for
a change in value in this record to determine completion. Additionally, completion may
be signalled by an interrupt. To facilitate this, the DSA ‘provides two types of interrupt
message storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2)
a device-specific Interrupt Message Storage (IMS) table’ [4, Sec. 3.7].

2.3.1.4 Ordering Guarantees

Ordering of operations is only guaranteed for a configuration with one WQ and one Engine
in a Group when exclusively submitting batch or task descriptors but no mixture. Even
in such cases, only write-ordering is guaranteed, implying that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’. Challenges arise, when an
operation fails, as the DSA will continue to process the following descriptors from the
queue. Consequently, caution is necessary in read-after-write scenarios. This can be
addressed by either waiting for successful completion before submitting the dependent
descriptor, inserting a drain descriptor for tasks, or setting the fence flag for a batch.
The latter two methods inform the processing engine that all writes must be committed,
and in case of the fence in a batch, to abort on previous error. [4, Sec. 3.9]

2.3.2 Software View

Since Linux Kernel 5.10, there exists a driver for the DSA which has no counterpart in
the Windows OS-Family [8, Sec. Installation] and other operating systems. Therefore,
accessing the DSA is only possible under Linux. To interact with the driver and perform
configuration operations, Intel’s accel-config [9] user-space toolset can be utilized. This
application provides a command-line interface and can read configuration files to set up
the device. The interaction is depicted in the upper block titled ‘User space’ in Figure
2.3. It interacts with the kernel driver, visible in light green and labelled ‘IDXD’ in
Figure 2.3. After successful configuration, each WQ is exposed as a character device
through mmap of the associated portal [6, Sec. 3.3].
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Figure 2.3: Intel Data Streaming Accelerator Software View. Illustrating the software
stack and internal interactions from user applications, through the driver to
the portal for work submission. [6, Fig. 1 (b)]

With the appropriate file permissions, a process could submit work to the DSA using
either the MOVDIR64B or ENQCMD instructions, providing the descriptors by manual
configuration. However, this process can be cumbersome, which is why Intel Data Mover
Library (Intel DML) exists.

With some limitations, like lacking support for DWQ submission, this library presents
an interface that takes care of creation and submission of descriptors, and error handling
and reporting. Thanks to the high-level-view the code may choose a different execution
path at runtime which allows the memory operations to either be executed in hardware
or software. The former on an accelerator or the latter using equivalent instructions
provided by the library. This makes code using this library automatically compatible
with systems that do not provide hardware support. [8, Sec. Introduction]

2.4 Programming Interface for Intel Data Streaming
Accelerator

As mentioned in Section 2.3.2, Intel DML offers a high level interface for interacting
with the hardware accelerator, specifically Intel DSA. Opting for the C++ interface, we
will now demonstrate its usage by example of a simple memcopy implementation for the
DSA.
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Figure 2.4: Memcpy Implementation Pseudocode. Performs copy operation of a block of
memory from source to destination. The DSA executing this copy can be
selected with the parameter node, and the template parameter path elects
whether to run on hardware (Intel DSA) or software (CPU).

In the function header of Figure 2.4 two differences from standard memcpy are notable.
Firstly, there is the template parameter named path, and secondly, an additional
parameter int node. Both will be discussed in the following paragraphs.

The path parameter allows the selection of the executing device, which can be either
the CPU or DSA. The options include dml::software (CPU), dml::hardware (DSA),
and dml::automatic, where the latter dynamically selects the device at runtime, favoring
DSA over CPU execution [8, Sec. Quick Start].

Choosing the engine which carries out the copy might be advantageous for performance,
as we can see in Section 3.2.3. With the engine directly tied to the processing node, as
observed in Section 2.3.1, the node ID is equivalent to the ID of the DSA.

Intel DML operates on data views, which we create from the given pointers to source
and destination and size. This is done using dml::make_view(uint8_t* ptr, size_t
size), visible in Figure 2.4, where these views are labelled src_view and dst_view. [8,
Sec. High-level C++ API, Make view]

In Figure 2.4, we submit a single descriptor using the asynchronous operation from
Intel DML. This uses the function dml::submit<path>, which takes an operation type
and parameters specific to the selected type and returns a handler to the submitted task.
For the copy operation, we pass the two views created previously. The provided handler
can later be queried for the completion of the operation. After submission, we poll for
the task completion with handler.get() and check whether the operation completed
successfully.

A noteworthy addition to the submission-call is the use of .block_on_fault(), en-
abling the DSA to manage a page fault by coordinating with the operating system. It’s
essential to highlight that this functionality only operates if the device is configured
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to accept this flag. [8, Sec. High-level C++ API, How to Use the Library] [8, Sec.
High-level C++ API, Page Fault handling]

2.5 System Setup and Configuration
In this section we provide a step-by-step guide to replicate the configuration being used
for benchmarks and testing purposes in the following chapters. While Intel’s guide
on DSA usage was a useful resource, we also consulted articles for setup on Lenovo
ThinkSystem Servers for crucial information not present in the former. It is important
to note that instructions for configuring the HBM access mode, as mentioned in Section
2.1, may vary from system to system and can require extra steps not covered in the list
below.

1. Set ‘Memory Hierarchy’ to Flat [10, Sec. Configuring HBM, Configuring Flat
Mode], ‘VT-d’ to Enabled in BIOS [7, Sec. 2.1] and, if available, ‘Limit CPU PA
to 46 bits’ to Disabled in BIOS [11, p. 5]

2. Use a kernel with IDXD driver support, available from Linux 5.10 or later [8, Sec.
Installation] and append the following to the kernel boot parameters in grub config:
intel_iommu=on,sm_on [11, p. 5]

3. Evaluate correct detection of DSA devices using dmesg | grep idxd which should
list as many devices as NUMA nodes on the system [11, p. 5]

4. Install accel-config from repository [9] or system package manager and inspect
the detection of DSA devices through the driver using accel-config list -i [11,
p. 6]

5. Create DSA configuration file for which we provide an example under
benchmarks/configuration-files/8n1d1e1w.conf in the accompanying repos-
itory [12] that is used for most benchmarks available. Then apply the configuration
using accel-config load-config -c [filename] -e [7, Fig. 3-9]

6. Inspect the now configured DSA devices using accel-config list [11, p. 7],
output should match the desired configuration set in the file used





3 Performance Microbenchmarks

In this chapter, we measure the performance of the DSA, with the goal to determine an
effective utilization strategy to apply the DSA to QdP. In Section 3.1 we lay out our
benchmarking methodology, then perform benchmarks in 3.2 and finally summarize our
findings in 3.3.

The performance of DSA has been evaluated in great detail by Reese Kuper et al. in
[6]. Therefore, we will perform only a limited amount of benchmarks with the purpose of
verifying the figures from [6] and analysing best practices and restrictions for applying
DSA to QdP.

3.1 Benchmarking Methodology

Figure 3.1: Xeon Max Layout [13, Fig. 14] for a 2-Socket System when configured with
HBM-Flat. Showing separate Node IDs for manual HBM access and for
Cores and DDR-SDRAM.

The benchmarks were conducted on a dual-socket server equipped with two Intel Xeon
Max 9468 CPUs, each with 4 nodes that have access to 16 GiB of HBM and 12 cores.
This results in a total of 96 cores and 128 GiB of HBM. The layout of the system is
visualized in Figure 3.1. For configuring it, we follow Section 2.5.

As Intel DML does not have support for DWQs, we run benchmarks exclusively with
access through SWQs. The application written for the benchmarks can be obtained in
source form under the directory benchmarks in the thesis repository [12].

The benchmark performs node setup as described in Section 2.4 and allocates source
and destination memory on the nodes passed in as parameters. To avoid page faults
affecting the results, the entire memory regions are written to before the timed part of

11
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the benchmark starts. We therefore also do not use ‘.block_on_fault()’, as we did for
the memcpy-example in Section 2.4.

Timing in the outer loop may display lower throughput than actual. This is the case,
should one of the DSAs participating in a given task finish earlier than the others. We
decided to measure the maximum time and therefore minimum throughput for these
cases, as we want the benchmarks to represent the peak achievable for distributing
one task over multiple engines and not executing multiple tasks of a disjoint set. As a
task can only be considered complete when all subtasks are completed, the minimum
throughput represents this scenario. This may give an advantage to the peak CPU
throughput benchmark we will reference later on, as it does not have this restriction
placed upon it.

Figure 3.2: Outer Benchmark Procedure Pseudocode. Timing marked with yellow back-
ground. Showing preparation of memory locations, clearing of cache entries,
timing points and synchronized benchmark launch.

To get accurate results, the benchmark is repeated 10 times. Each iteration is timed
from beginning to end, marked by yellow in Figure 3.2. For small task sizes, the iterations
complete in a very short amount of time, which can have adverse effects on the results
[14]. Therefore, we repeat the code of the inner loop for a configurable amount, virtually
extending the duration of a single iteration for these cases.

For all DSAs used in the benchmark, a submission thread executing the inner bench-
mark routine is spawned. The launch is synchronized by use of a barrier for each iteration.
The behaviour in the inner function then differs depending on the submission method
selected which can be a single submission or a batch of given size. This can be seen in
Figure 3.3 at the switch statement for ‘mode’. Single submission follows the example
given in Section 2.4, and we therefore do not go into detail explaining it here. Batch
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Figure 3.3: Inner Benchmark Procedure Pseudocode. Showing work submission for single
and batch submission.

submission works unlike the former. A sequence with specified size is created which tasks
are then added to. This sequence is submitted to the engine similar to the submission of
a single descriptor.

3.2 Benchmarks
In this section we will In this section, we will present three benchmarks, each accompanied
by setup information and a preview. We will then provide plots displaying the results,
followed by a detailed analysis. We will formulate expectations and compare them with
the observations from our measurements.

3.2.1 Submission Method

With each submission, descriptors must be prepared and sent to the underlying hardware.
This process is anticipated to incur a cost, impacting throughput sizes and submis-
sion methods differently. We submit different sizes and compare batching with single
submissions, determining which combination of submission method and size is most
effective.

We anticipate that single submissions will consistently yield poorer performance,
particularly with a pronounced effect on smaller transfer sizes. This expectation arises
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from the fact that the overhead of a single submission with the SWQ is incurred for every
iteration, whereas the batch experiences this overhead only once for multiple copies.
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Size of Submitted Task
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Figure 3.4: Throughput for different Submission Methods and Sizes. Performing a copy
with source and destination being node 0, executed by the DSA on node 0.
Observable is the submission cost which affects small transfer sizes differently,
as there the completion time is lower.

In Figure 3.4 we conclude that with transfers of 1 MiB and upwards, the submission
method makes no noticeable difference. For smaller transfers the performance varies
greatly, with batch operations leading in throughput. This finding is aligned with the
observation that ‘SWQ observes lower throughput between 1-8 KB [transfer size]’ [6, p.
6 and 7] for normal submission method.

Another limitation may be observed in this result, namely the inherent throughput
limit per DSA chip of close to 30 GiB/s. This is apparently caused by I/O fabric
limitations [6, p. 5].

3.2.2 Multithreaded Submission

As we might encounter access to one DSA from multiple threads through the associated
Shared Work Queue, understanding the impact of this type of access is crucial. We
benchmark multithreaded submission for one, two, and twelve threads, with the latter
representing the core count of one processing sub-node on the test system. We spawn
multiple threads, all submitting to one DSA. Furthermore, we perform this benchmark
with sizes of 1 MiB and 1 GiB to examine, if the behaviour changes with submission
size. For smaller sizes, the completion time may be faster than submission time, leading
to potentially different effects of threading due to the fact that multiple threads work
to fill the queue, preventing task starvation. We may also experience lower-than-peak
throughput with rising thread count, caused by the synchronization inherent with SWQ.
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Figure 3.5: Throughput for different Thread Counts and Sizes. Multiple threads submit
to the same Shared Work Queue. Performing a copy with source and
destination being node 0, executed by the DSA on node 0.

In Figure 3.5, we note that threading has no discernible negative impact. The
synchronization appears to affect single-threaded access in the same manner as it does
for multiple threads. Interestingly, for the smaller size of 1 MiB, our assumption proved
accurate, and performance increased with the addition of threads, which we attribute to
enhanced queue usage. We ascribe the higher throughput observed with 1 GiB to the
submission delay which is incurred more frequently with lower transfer sizes.

3.2.3 Data Movement from DDR-SDRAM to HBM

Moving data from Double Data Rate Synchronous Dynamic Random Access Memory
(DDR-SDRAM) to HBM is most relevant to the rest of this work, as it is the target
application. As we discovered in Section 3.2.1, one DSA has a peak bandwidth limit of
30 GiB/s. For each node, the test system is configured with two DIMMs of DDR5-4800.

The naming scheme contains the data rate in Megatransfers per second. We calculate
the transfers performed per second. [15]

2 DIMM ∗ 4800 MT

s ∗ DIMM
= 9600 MT/s

The data width of DDR5 is 64 bit. We calculate the amount of Bytes per Transfer.
[15]

64b

8b/B
/ Transfer = 8B / Transfer

Using the results from the previous calculations, we are now able to calculate the
theoretical peak throughput speed per Node on our test system.
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9600 MT/s ∗ 8B/T = 75 GiB/s

We conclude that to achieve peak speeds, a copy task has to be split across multiple
DSAs. Two methods of splitting will be evaluated. The first employs a brute force
approach, utilizing all available resources for any transfer direction. The second method’s
behaviour depends on the data source and destination locations. Given that our system
consists of multiple sockets, communication crossing between sockets could introduce
latency and bandwidth disadvantages [16]. We posit that for intra-socket transfers,
utilizing the DSA from the second socket will have only a marginal effect. For transfers
crossing sockets, we assume every DSA performs equally worse, prompting us to use only
the ones on the destination and source nodes for them being the physically closest to
both memory regions. While this choice may result in lower performance, it uses only
one-fourth of the engines of the brute force approach for inter-socket transfers and half
for intra-socket transfers. This approach also frees up additional chips for other threads
to utilize.update, add

push-pull
description

For this benchmark, we transfer 1 Gibibyte of data from node 0 to the destination
node, employing the submission method previously described. For each utilized node,
we spawn one pinned thread responsible for submission. We present data for nodes 8,
11, 12, and 15. To understand the selection, refer to Figure 3.1, which illustrates the
node IDs of the configured systems and the corresponding storage technology. Node 8
accesses the HBM on node 0, making it the physically closest possible destination. Node
11 is located diagonally on the chip, representing the farthest intra-socket operation
benchmarked. Nodes 12 and 15 lie diagonally on the second socket’s CPU, making them
representative of inter-socket transfer operations.

We first look at behaviour common for the three load balancing techniques in Figure
3.6. The real world peak throughput reaches close to 64 GiB/s, which, as we will see
in Section 3.2.4, aligns with what can be achieved in select scenarios with the CPU.
Additionally, NUMA-Node (Node) 8 performs worse than copying to Node 11, leading
us to believe that the DSA here encounters some shared data paths, as Node 8 accesses
the HBM on Node 0, from which the data originates. Another interesting observation is
that, contrary to our assumption, the physically more distant (from data origin Node 0)
Node 15 reaches higher throughput than the closer Node 12. We lack an explanation
for this anomaly and will further examine the behaviour in the analysis of the CPU
throughput results in Section 3.2.4.

From the results of the brute force approach illustrated in Figure 3.6a, we observe peak
speeds of close to 64 GiB/s when copying across sockets from Node 0 to Node 15. This
contradicts our assumption that peak bandwidth would be limited by the interconnect.
However, for intra node copies, there exists an observable penalty for using the off-socket
DSAs. When comparing with push-pull in Figure 3.6c, performance actually decreases by
utilizing four times more resources over a longer duration. As the brute force approach
is still slightly faster than push-pull and smart-assignment, utilizing more resources still
yields some gains, although far from linear. Therefore, we conclude that, although data
movement across the interconnect incurs additional cost, no hard bandwidth limit is
observable.
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(a) Brute Force Assignment:
using all available DSA,
irrespective of source and
destination locations.
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(b) Smart Assignment: using
four on-socket DSA for
intra-socket and the DSA
on source and destination
Node for inter-socket.
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(c) Push-Pull: using the DSA
on source and destination
Node except intra node
using two off-node but on-
socket DSA.

Figure 3.6: Copy from Node 0 to the destination Node specified on the x-axis. Shows
peak throughput achievable with DSA for different load balancing techniques.

Smart Node assignment results in peak performance observable for intra socket data
movement, see Figure 3.6b. Operations crossing the socket boundary, namely to Nodes
12 and 15, are slightly slower than the peak observed for brute force assignment, visible
in Figure 3.6a. At the same time, these use one fourth of the available resources, again
showing less-than-linear scaling of throughput with the amount of participating DSAs. evaluate

pushpull
here when
benchmark
is done

While consuming significantly more resources, the brute force copy depicted in Figure
3.6a surpasses the performance of the smart approach shown in Figure 3.6b. We observe
an increase in transfer speed by utilizing all available DSA, achieving 2 GiB/s for copying
to Node 8, 18 GiB/s for Nodes 11 and 12, and 30 GiB/s for Node 15. The smart approach
could accommodate another intra-socket copy on the second socket, we assume, without
observing negative impacts. From this, we conclude that the smart copy assignment is
worth using, as it provides better scalability.

update when
pushpull is
completed3.2.4 Data Movement using CPU

For evaluating CPU copy performance we use the benchmark code from the subsequent
Section 3.2.3, selecting the software instead of hardware execution path (see Section
2.3.2). Colleagues performed extensive benchmarking of the peak throughput on CPU for
the test system [17], from which we will present results as well. We compare expectations
and results from the previous Section with the measurements.

As evident from Figure 3.7a, the observed throughput of software path is less than half
of the theoretical bandwidth. Therefore, software path is to be treated as a compatibility
measure, and not for providing high performance data copy operations. As the sole



18 / 39 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

8 11 12 15
Destination Node

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 in

 G
iB

/s

(a) DML code for allnodes running
on software path.
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(b) Colleague’s CPU peak

throughput benchmark [17]
results.

Figure 3.7: Throughput from DDR-SDRAM to HBM on CPU. Copying from Node 0 to
the destination Node specified on the x-axis.

benchmark, the software path however performs as expected for transfers to Nodes 12
and 15, with the latter performing worse. Taking the layout from Figure 3.1, back in
the previous Section, we assumed that Node 12 would outperform Node 15 due to lower
physical distance. This assumption was invalidated, making the result for CPU in this
case unexpected.

In Figure 3.7b, peak throughput is achieved for intra node operation. This validates
the assumption that there is a cost for communicating across sockets, which was not
as directly observable with the DSA. The same disadvantage for Node 12, as seen in
Section 3.2.3 can be observed in Figure 3.7b. As the results from software path do not
exhibit this, the anomaly seems to only occur in bandwidth-saturating scenarios.

3.3 Analysis
In this section we summarize the conclusions drawn from the three benchmarks performed
in the sections above and outline a utilization guideline. We also compare CPU and
DSA for the task of copying data from DDR-SDRAM to HBM.

• From 3.2.1 we conclude that small copies under 1 MiB in size require batching and
still do not reach peak performance. Task size should therefore be at or above 1
MiB and otherwise use the CPU.

• Section 3.2.2 assures that access from multiple threads does not negatively affect
the performance when using Shared Work Queue for work submission. Due to the
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lack of Dedicated Work Queue support, we have no data to determine the cost of
submission to the SWQ.

• In 3.2.3, we chose to use the presented smart copy methodology to split copy tasks
across multiple DSA chips to achieve low utilization with acceptable performance. evaluate

after push-
pull resultsOnce again, we refer to Figures 3.6 and 3.7, both representing the maximum throughput

achieved with the utilization of either DSA for the former and CPU for the latter.
Noticeably, the DSA does not seem to suffer from inter-socket overhead like the CPU.
In any case, DSA performs similar to the CPU, demonstrating potential for faster data
movement while simultaneously freeing up cycles for other tasks.

We discovered an anomaly for Node 12 for which we did not find an explanation. As
the behaviour is also exhibited by the CPU, discovering the root issue falls outside the
scope of this work.

Even though we could not find an explanation for all measurements, this chapter
still gives insight into the performance of the DSA, its strengths and its weaknesses. It
provides data-driven guidance on a complex architecture, helping to find the optimum
for applying the DSA to our expected and possibly different workloads.





4 Design

In this chapter we design a class interface for use as a general purpose cache. We will
present challenges and then detail the solutions employed to face them, finalizing the
architecture with each step. Details on the implementation of this blueprint will be
omitted, as we discuss a selection of relevant aspects in Chapter 5. We also shortly touch
the subject of DSA usage.

4.1 Cache Design
The task of prefetching is somewhat aligned with that of a cache. As a cache is more
generic and allows use beyond QdP, the decision was made to address the prefetching in
QdP by implementing an offloading Cache. Henceforth, when referring to the provided
implementation, we will use Cache.

The interface of Cache must provide three basic functions: (1) requesting a memory
block to be cached, (2) accessing a cached memory block and (3) synchronizing cache
with the source memory. The latter operation comes in to play when the data that is
cached may also be modified, necessitating an update either from the source or vice versa.
Due various setups and use cases for this cache, the user should also be responsible for
choosing cache placement and the copy method. As re-caching is resource intensive, data
should remain in the cache for as long as possible. We only flush entries, when lack of
free cache memory requires it.

4.1.1 Interface

To facilitate rapid integration and alleviate developer workload, we opted for a simple
interface. Given that this work primarily focuses on caching static data, we only provide
cache invalidation and not synchronization. The Cache::Invalidate function, given a
memory address, will remove all entries for it from the cache. The other two operations,
caching and access, are provided in one single function, which we shall henceforth call
Cache::Access. This function receives a data pointer and size as parameters and takes
care of either submitting a caching operation if the pointer received is not yet cached or
returning the cache entry if it is. The user retains control over cache placement and the
assignment of tasks to accelerators through mechanisms outlined in 4.2. This interface is
represented on the right block of Figure 4.1 labelled ‘Cache’ and includes some additional
operations beyond the basic requirements.

Given the asynchronous nature of caching operations, users may opt to await their
completion. This proves particularly beneficial when parallel threads are actively pro-
cessing, and the current thread strategically pauses until its data becomes available in
faster memory, thereby optimizing access speeds for local computations.

21
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CacheData

CacheData(uint8_t* data, size_t size)

CacheData(const CacheData& other)

~CacheData()

void WaitOnCompletion()

uint8_t* GetDataLocation() const

Cache

Cache() = default

void Flush(int node = -1)

~Cache()

void Init(CachePolicy*, CopyPolicy*)

std::unique_ptr<CacheData>
Access(uint8_t* data, size_t size)

void Clear()

void Invalidate()

Figure 4.1: Public Interface of CacheData and Cache Classes. Colour coding for thread
safety. Grey denotes impossibility for threaded access. Green indicates full
safety guarantees only relying on atomics to achieve this. Yellow may use
locking but is still safe for use. Red must be called from a single threaded
context.

To facilitate this process, the Cache::Access method returns an instance of an
object referred to as CacheData. Figure 4.1 documents the public interface for
CacheData on the left block labelled as such Invoking CacheData::GetDataLocation
provides access to a pointer to the location of the cached data. Additionally, the
CacheData::WaitOnCompletion method is available, designed to return only upon the
completion of the caching operation. During this period, the current thread will sleep,
allowing unimpeded progress for other threads. To ensure that only pointers to valid
memory regions are returned, this function must be called in order to update the cache
pointer. It queries the completion state of the operation, and, on success, updates the
cache pointer to the then available memory region.

4.1.2 Cache Entry Reuse

When multiple consumers wish to access the same memory block through the Cache,
we face a choice between providing each with their own entry or sharing one for all
consumers. The first option may lead to high load on the accelerator due to multiple
copy operations being submitted and also increases the memory footprint of the cache.
The latter option, although more complex, was chosen to address these concerns. To
implement this, the existing CacheData will be extended in scope to handle multiple
consumers. Copies of it can be created, and they must synchronize with each other for
CacheData::WaitOnCompletion and CacheData::GetDataLocation. This is illustrated
by the green markings, indicating thread safety guarantees for access, in Figure 4.1.
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4.1.3 Cache Entry Lifetime

Allowing multiple references to the same entry introduces concerns regarding memory
management. The allocated block should only be freed when all copies of a CacheData
instance are destroyed, thereby tying the cache entry’s lifetime to the longest living copy
of the original instance. This ensures that access to the entry is legal during the lifetime
of any CacheData instance. Therefore, deallocation only occurs when the last copy of a
CacheData instance is destroyed.

4.1.4 Usage Restrictions

The cache, in the context of this work, primarily handles static data. Therefore, two
restrictions are placed on the invalidation operation. This decision results in a drastically
simpler cache design, as implementing a fully coherent cache would require developing a
thread-safe coherence scheme, which is beyond the scope of our work.

Firstly, overlapping areas in the cache will result in undefined behaviour during the
invalidation of any one of them. Only the entries with the equivalent source pointer will
be invalidated, while other entries with differing source pointers, which due to their size,
still cover the now invalidated region, will remain unaffected. At this point, the cache
may or may not continue to contain invalid elements.

Secondly, invalidation is a manual process, requiring the programmer to remember
which points of data are currently cached and to invalidate them upon modification. No
ordering guarantees are provided in this situation, potentially leading to threads still
holding pointers to now-outdated entries and continuing their progress with this data.

Due to its reliance on libnuma for memory allocation, Cache is exclusively compatible
with systems where this library is available. It is important to note that Windows
platforms use their own API for this purpose, which is incompatible with libnuma,
rendering the code non-executable on such systems [18].

4.2 Accelerator Usage
Compared with the challenges of ensuring correct entry lifetime and thread safety, the
application of DSA for the task of duplicating data is relatively straightforward, thanks
in part to Intel DML [8]. Upon a call to Cache::Access and determining that the given
memory pointer is not present in the cache, work is submitted to the accelerator. However,
before proceeding, the desired location for the cache entry must be determined which
the user-defined cache placement policy function handles. Once the desired placement
is obtained, the copy policy then determines, which nodes should participate in the
copy operation. Following Section 2.3.1, this is equivalent to selecting the accelerators.
The copy tasks are distributed across the participating nodes. As the choice of cache
placement and copy policy is user-defined, one possibility will be discussed in Chapter 5.





5 Implementation

In this chapter, we concentrate on specific implementation details, offering an in-depth
view of how the design promises outlined in Chapter 4 are realized. Firstly, we delve
into the usage of locking and atomics to achieve thread safety. Subsequently, we provide
an example of the policy functions alluded to in Section 4.2. Finally, we apply the cache
to Query-driven Prefetching.

5.1 Locking and Usage of Atomics
The usage of locking and atomics has proven to be challenging. Their use is performance-
critical, and mistakes may lead to deadlock. Consequently, these aspects constitute the
most interesting part of the implementation, which is why this chapter will extensively
focus on the details of their implementation.

5.1.1 Cache State Lock

To keep track of the current cache state the Cache will hold a reference to each currently
existing CacheData instance. The reason for this is twofold: In Section 4.1 we decided to
keep elements in the cache until forced by memory pressure to remove them. Secondly in
Section 4.1.2 we decided to reuse one cache entry for multiple consumers. The second part
requires access to the structure holding this reference to be thread safe when accessing
and modifying the cache state in Cache::Access, Cache::Flush and Cache::Clear.
The latter two both require unique locking, preventing other calls to Cache from making
progress while the operation is being processed. For Cache::Access the use of locking
depends upon the caches state. At first, only a shared lock is acquired for checking
whether the given address already resides in cache, allowing other Cache::Access-
operations to also perform this check. If no entry for the region is present, a unique lock
is required as well when adding the newly created entry to cache.

A map-datastructure was chosen to represent the current cache state with the key being
the memory address of the entry and as value the CacheData instance. As the caching
policy is controlled by the user, one datum may be requested for caching in multiple
locations. To accommodate this, one map is allocated for each available NUMA-Node of
the system. This can be exploited to reduce lock contention by separately locking each
Node’s state instead of utilizing a global lock. This ensures that Cache::Access and
the implicit Cache::Flush it may cause can not hinder progress of caching operations
on other Nodes. Both Cache::Clear and a complete Cache::Flush as callable by the
user will now iteratively perform their respective task per Node state, also allowing other
Node to progress.

25
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Even with this optimization, in scenarios where the Cache is frequently tasked with
flushing and re-caching by multiple threads from the same node, lock contention will
negatively impact performance by delaying cache access. Due to passive waiting, this
impact might be less noticeable when other threads on the system are able to make
progress during the wait.

5.1.2 CacheData Atomicity

The choice made in 4.1.2 necessitates thread-safe shared access to the same resource.
The C++ standard library provides std::shared_ptr<T>, a reference-counted pointer
that is thread-safe for the required operations [19], making it a suitable candidate for
this task. Although an implementation using it was explored, it presented its own set of
challenges.

As we aim to minimize the time spent in a locked region, only the task is added to
the Node’s cache state when locked, with the submission taking place outside the locked
region. We assume the handlers of Intel DML to be unsafe for access from multiple
threads. To achieve the safety for CacheData::WaitOnCompletion, outlined in 4.1.2,
threads need to coordinate which one performs the actual waiting. To avoid queuing
multiple copies of the same task, the task must be added before submission. This results
in a CacheData instance with an invalid cache pointer and no handlers to wait for,
presenting an edge case to be considered.

Using std::shared_ptr<T> also introduces uncertainty, relying on the implementation
to be performant. The standard does not specify whether a lock-free algorithm is to be
used, and [20] suggests abysmal performance for some implementations, although the
full article is in Korean. No further research was found on this topic.

Therefore, the decision was made to implement atomic reference counting for
CacheData. This involves providing a custom constructor and destructor wherein a
shared atomic integer is either incremented or decremented using atomic fetch sub and
add operations [21] to modify the reference count. In the case of a decrease to zero, the
destructor was called for the last reference and then performs the actual destruction.

Due to the possibility of access by multiple threads, the implementation of
CacheData::WaitOnCompletion proved to be challenging. In the first implementa-
tion, a thread would check if the handlers are available and atomically wait [22] on
a value change from nullptr, if they are not. As the handlers are only available after
submission, a situation could arise where only one copy of CacheData is capable of
actually waiting on them.

To illustrate this, an exemplary scenario is used, as seen in the sequence diagram
Figure 5.1. Assume that three threads T1, T2 and T3 wish to access the same resource.
T1 is the first to call CacheData::Access and therefore adds it to the cache state and
will perform the work submission. Before T1 may submit the work, it is interrupted and
T2 and T3 obtain access to the incomplete CacheData on which they wait, causing them
to see a nullptr for the handlers but invalid cache pointer, leading to atomic wait on
the cache pointer (marked blue lines in Figure 5.1). T1 submits the work and sets the
handlers (marked red lines in Figure 5.1), while T2 and T3 continue to wait. Therefore,
only T1 can trigger the waiting and is therefore capable of keeping T2 and T3 from
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CacheData Thread 1

WaitOnCompletion

Thread 2 Thread 3

WaitOnCompletion

Add Handlers

WaitOnCompletion

atomic wait on
cache update

return

return

return T1

return T2

return

Figure 5.1: Sequence for Blocking Scenario. Observable in first draft implementation.
Scenario where T1 performed first access to a datum followed T2 and T3.
Then T1 holds the handlers exclusively, leading to the other threads having
to wait for T1 to perform the work submission and waiting before they can
access the datum through the cache.

progressing. This is undesirable as it can lead to deadlocking if by some reason T1 does
not wait and at the very least may lead to unnecessary delay for T2 and T3 if T1 does
not wait immediately.

As a solution for this, a more intricate implementation is required. When waiting,
the threads now immediately check whether the cache pointer contains a valid value
and return if it does, as nothing has to be waited for in this case. We will use the same
example as before to illustrate the second part of the waiting procedure. Both T2 and
T3 arrive in this latter section as the cache was invalid at the point in time when waiting
was called for. They now atomically wait on the handlers pointer to change, instead of
doing it the other way around as before. Now when T1 supplies the handlers, it also uses
std::atomic<T>::notify_one [23] to wake at least one thread waiting on value change
of the handlers pointer, if there are any. Through this the exclusion that was observable
in the first implementation is already avoided. If nobody is waiting, then the handlers
will be set to a valid pointer and a thread may pass the atomic wait instruction later
on. Following this wait, the handlers pointer is atomically exchanged [24] with nullptr,
invalidating it. Each thread again checks whether it has received a valid local pointer to
the handlers from the exchange. If it has then the atomic operation guarantees that is
now in sole possession of the pointer. The owning thread is tasked with actually waiting.
All other threads will now regress and call CacheData::WaitOnCompletion again. The
solo thread may proceed to wait on the handlers and should update the cache pointer.

Additional cases must be considered for the latter implementation to be safe and free
of deadlocks. We will now discuss these edge cases and their resolution.
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Figure 5.2: CacheData::WaitOnCompletion Pseudocode. Final rendition of the imple-
mentation for a fair wait function.

5.1.2.1 Initial Invalid State

We previously mentioned the possibly problematic situation where both the cache pointer
and the handlers are not yet available for an instance in CacheData. This situation is
avoided explicitly by the implementation due to waiting on the handlers being atomically
updated from nullptr to valid. When the handlers will be set in the future by the thread
calling Cache::Access first, progress is guaranteed.

5.1.2.2 Invalid State on Immediate Destruction

The previous Section discussed the initial invalid state and noted that, as long as the
handlers will be set in the future, progress is guaranteed. We now discuss the situation
where handlers will not be set. This situation is encountered when a memory region is
accessed by threads T1 and T2 concurrently. One will win the data race to add the entry
to the cache state, we choose T1. T2 then must follow Section 4.1.2 and return the entry
already present in cache state. Therefore, T2 has to destroy the CacheData instance it
created previously.
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The destructor of CacheData waits on operation completion in order to ensure that no
running jobs require the cache memory region, before deallocating it. This necessitates
usability of CacheData::WaitOnCompletion for the case of immediate destruction. As
the instance of CacheData is destroyed immediately, no tasks will be submitted to the
DSA and therefore handlers never become available, leading to deadlock on destruction.

To circumvent this deadlock, the initial state of CacheData was modified to be safe
for deletion. An initialization function was added to CacheData, which is required to be
called when the instance is to be used.

5.1.2.3 Invalid State on Operation Failure

CacheData::WaitOnCompletion first checks for a valid cache pointer and then waits on
the handlers becoming valid. To process the handlers, the global atomic pointer is read
into a local copy and then set to nullptr using std::atomic<T>::exchange. During
evaluation of the handlers completion states, an unsuccessful operation may be found.
In this case, the cache memory region remains invalid and may therefore not be used. In
this case, both the handlers and the cache pointer will be nullptr. This results in an
invalid state, like the one discussed in Section 5.1.2.1.

In this invalid state, progress is not guaranteed by the measures set forth to handle
the initial invalidity. The cache is still nullptr and as the handlers have already been set
and processed, they will also be nullptr without the chance of them ever becoming valid.

Edge case handling is introduced and the cache pointer is set to the source address,
providing validity.

5.1.2.4 Locally Invalid State due to Race Condition

The guarantee of std::atomic<T>::wait to only wake up when the value has changed
[22] was found to be stronger than the promise of waking up all waiting threads with
std::atomic<T>::notify_all [25].

As visible in Figure 5.2, we wait while the handlers-pointer is nullptr, if the cache
pointer is invalid. To exemplify we use the following scenario. Both T1 and T2 call
CacheData::WaitOnCompletion, with T1 preceding T2. T1 exchanges the global handlers
pointer with nullptr, invalidating it. Before T1 can check the status of the handlers
and update the cache pointer, T2 sees an invalid cache pointer and then waits for the
handlers becoming available.

This has again caused a similar state of invalidity as the previous two Sections handled.
As the handlers will not become available again due to being cleared by T1, the second
consumer, T2, will now wait indefinitely. A solution for this is to not exchange the
handlers pointer with nullptr but with a second invalid value.

We must therefore determine a secondary invalid pointer. As the largest accessible
memory location on modern 64-bit-systems requires only the lower 52-bits [26, p. 120] [27,
p. 4-2] setting all bits of a 64-bit-value yields an inaccessible address which is therefore
used as the second invalid state possible. Figure 5.2 refers to this as ‘uint64::max’.

This secondary value allows T2 to pass the wait, then perform the exchange of handlers
itself. T2 then checks the local copy of the handlers pointer for validity. The invalid
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state now includes both nullptr and the secondary invalid pointer chosen. With this, the
deadlock is avoided and T2 will wait for T1 completing the processing of the handlers.

5.2 Accelerator Usage
After 4.2 the implementation of Cache provided leaves it up to the user to choose a
caching and copy method policy which is accomplished through submitting function
pointers at initialization of the Cache. In 2.5 we configured our system to have separate
Nodes for accessing HBM which are assigned a Node-ID by adding eight to the Nodes ID
of the Node that physically contains the HBM. Therefore, given Node 3 accesses some
datum, the most efficient placement for the copy would be on Node 3 + 8 = 11. As the
Cache is intended for multithreaded usage, conserving accelerator resources is important,
so that concurrent cache requests complete quickly. To get high per-copy performance
while maintaining low usage, the smart-copy method is selected as described in 3.2.3 for
larger copies, while small copies will be handled exclusively by the current node. This
distinction is made due to the overhead of assigning the current thread to the selected
nodes, which is required as Intel DML assigns submissions only to the DSA engine
present on the node of the calling thread [8, Section ”NUMA support”]. No testing has
taken place to evaluate this overhead and determine the most effective threshold.

5.3 Application to Query-driven Prefetching
Applying the Cache to QdP is straightforward. We adapted the benchmarking code
developed by Anna Bartuschka and André Berthold [3], calling Cache::Access for both
prefetching and cache access.



6 Evaluation

In this chapter we will define our expectations, applying the developed Cache to Query-
driven Prefetching. To measure the performance, we adapted code developed by colleagues
André Berthold and Anna Bartuschka for evaluating QdP in [3].

6.1 Expectations

(b) Query Execution Pipeline(a) SQL Query

SELECT sum(b)
FROM r
WHERE a < 50

SCANa

σa<50 (FILTER)

PROJECTb←a

SCANb

Gsum(b)

Figure 6.1: Illustration of the benchmarked simple query in (a) and the corresponding
pipeline in (b). Taken from [3, Fig. 1].

The benchmark executes a simple query as illustrated in Figure 6.1 which presents a
challenging scenario to the cache. As the filter operation applied to a is not particularly
complex, its execution time can be assumed to be short. Therefore, the Cache has little
time during which it must prefetch, which will amplify delays caused by processing
overhead in the Cache itself or from submission to the Work Queue. This makes the
chosen query suited to stress test the developed solution.

With this difficult scenario, we expect to spend time analysing runtime behaviour of
our benchmark in order to optimize the Cache and the way it is applied to the query.
Optimizations should yield slight performance improvement over the baseline, using
DRAM, and will not reach the theoretical peak, where the data for b resides in HBM.

Consider using parts of flamegraph. Same speed as dram, even though allocation is
performed in the timed region and not before. Mention dml performs busy waiting (cite
dsa-paper 4.4 for use of interrupts mentioned in arch), optimization with weak wait.
Mention optimization weak access for prefetching scenario.
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6.2 Observation and Discussion



7 Conclusion And Outlook
write in-
troductory
paragraph7.1 Conclusions
write this
section

7.2 Future Work
write this
section

• evaluate performance with more complex query

• evaluate impact of lock contention and atomics on performance

• implement direct dsa access to assess gains from using shared work queue

• improve the cache implementation for use cases where data is not static
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B

BAR
... desc ...

D

DDR-SDRAM
... desc ...

DMR
... desc ...

DSA
... desc ...

DWQ
... desc ...

E

ENQCMD
... desc ...

H

HBM
... desc ...

I

Intel DML
... desc ...

IOMMU
... desc ...

M
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MOVDIR64B
... desc ...

N

Node
... desc ...

P

PASID
... desc ...

Q

QdP
... desc ...

S

SWQ
... desc ...

W

WQ
... desc ...
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