
Bachelors Thesis

Data Movement in Heterogeneous
Memories with Intel Data Streaming

Accelerator

Anatol Constantin Fürst

15th February 2024

Technische Universität Dresden
Faculty of Computer Science

Institute of Systems Architecture
Chair of Operating Systems

Academic Supervisors:
Prof. Dr.-Ing. Horst Schirmeier
Prof. Dr.-Ing. habil. Dirk Habich
M.Sc. André Berthold

Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

Aufgabenstellung für die Anfertigung einer Bachelor-Arbeit

Studiengang:
Studienrichtung:
Name:
Matrikelnummer:

Bachelor
Informatik (2009)
Constantin Fürst
4929314

Titel: Data Movement in Heterogeneous Memories with
Intel Data Streaming Accelerator

Developments in main memory technologies like Non-Volatile RAM (NVRAM), High Bandwidth
Memory (HBM), NUMA, or Remote Memory, lead to heterogeneous memory systems that,
instead of providing one monolithic main memory, deploy multiple memory devices with
different non-functional memory properties. To reach optimal performance on such systems, it
becomes increasingly important to move data, ahead of time, to the memory device with non-
functional properties tailored for the intended workload, making data movement operations
increasingly important for data intensive applications. Unfortunately, while copying, the CPU is
mostly busy with waiting for the main memory, and cannot work on other computations. To
tackle this problem Intel implements the Intel Data Streaming Accelerator (Intel DSA), an engine
to explicitly offload data movement operations from the CPU, in their newly released Intel Xeon
CPU Max processors.
The goal of this bachelor thesis is to analyze and characterize the architecture of the Intel

DSA and the vendor-provided APIs. The student should benchmark the performance of Intel
DSA and compare it to the CPU’s performance, concentrating on data transfers between DDR5-
DRAM and HBM and between different NUMA nodes. Additionally, the student should find
out in what way and to what extent parallel processes copying data interfere with each other.
Analyzing the performance information, the thesis should outline a gainful utilization of the
Intel DSA and demonstrate its potential by extending the Query-driven Prefetching concept,
which aims to speed up database query execution in heterogeneous memory systems.

Gutachter: Prof. Dr.-Ing. Dirk Habich
Betreuer: André Berthold, M.Sc.
Ausgehändigt am: 4. Dezember 2023
Einzureichen am: 19. Februar 2024

Prof. Dr.-Ing. Horst Schirmeier
Betreuender Hochschullehrer

Statement of Authorship
I hereby declare that I am the sole author of this bachelor thesis and that I have not
used any sources other than those listed in the bibliography and identified as references.
I further declare that I have not submitted this thesis at any other institution in order
to obtain a degree.

Dresden, 15th February 2024

Anatol Constantin Fürst

Abstract

This bachelor’s thesis explores data locality in heterogeneous memory systems, char-
acterized by advancements in main memory technologies such as Non-Volatile RAM
(NVRAM) and High Bandwidth Memory (HBM). Systems equipped with more than
one type of main memory or employing a Non-Uniform Memory Architecture (NUMA)
necessitate strategic decisions regarding data placement to take advantage of the proper-
ties of the different storage tiers. In response to this challenge, Intel has introduced the
Data Streaming Accelerator (DSA), which offloads data operations, offering a potential
avenue for enhancing efficiency in data-intensive applications. The primary objective of
this thesis is to provide a comprehensive analysis and characterization of the architecture
and performance of the DSA, along with its application to a domain-specific prefetching
methodology aimed at accelerating database queries within heterogeneous memory sys-
tems. We contribute a versatile library, capable of performing caching, data replication
and prefetching asynchronously, accelerated by the Intel Data Streaming Accelerator
(DSA).

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1

2 Technical Background 3
2.1 High Bandwidth Memory . 3
2.2 Query-driven Prefetching . 4
2.3 Intel Data Streaming Accelerator . 4
2.4 Programming Interface for Intel Data Streaming Accelerator 8
2.5 System Setup and Configuration . 9

3 Performance Microbenchmarks 11
3.1 Benchmarking Methodology . 11
3.2 Benchmarks . 13
3.3 Analysis . 19

4 Design 21
4.1 Interface . 21
4.2 Usage Restrictions . 23

5 Implementation 25
5.1 Synchronization for Cache and CacheData 25
5.2 Application to Query-driven Prefetching 30

6 Evaluation 33
6.1 Benchmarked Task . 33
6.2 Expectations . 33
6.3 Observations . 34
6.4 Discussion . 36

7 Conclusion And Outlook 39

Glossary 41

Bibliography 43

IX

List of Figures

2.1 High Bandwidth Memory Design Layout. Shows that an HBM-module
consists of stacked DRAM and a logic die. [3] 3

2.2 Illustration of a simple query in (a) and the corresponding pipeline in (b).
[2, Fig. 1] . 4

2.3 Intel Data Streaming Accelerator Internal Architecture. Shows the com-
ponents that the chip is made up of, how they are connected and which
outside components the DSA communicates with. [6, Fig. 1 (a)] 5

2.4 Intel Data Streaming Accelerator Software View. Illustrating the software
stack and internal interactions from user applications, through the driver
to the portal for work submission. [6, Fig. 1 (b)] 7

2.5 Memcpy Implementation Pseudocode. Performs copy operation of a block
of memory from source to destination. The DSA executing this copy can
be selected with the parameter node, and the template parameter path
elects whether to run on hardware (Intel DSA) or software (CPU). . . . 8

3.1 Xeon Max Layout [15, Fig. 14] for a 2-Socket System when configured
with HBM-Flat. Showing separate Node IDs for manual HBM access and
for Cores and DDR-SDRAM. 11

3.2 Outer Benchmark Procedure Pseudocode. Timing marked with yellow
background. Showing preparation of memory locations, clearing of cache
entries, timing points and synchronized benchmark launch. 12

3.3 Inner Benchmark Procedure Pseudocode. Showing work submission for
single and batch submission. 13

3.4 Throughput for different Submission Methods and Sizes. Performing a
copy with source and destination being Node 0, executed by the DSA on
Node 0. Observable is the submission cost which affects small transfer
sizes differently, as there the completion time is lower. 14

3.5 Throughput for different Thread Counts and Sizes. Multiple threads
submit to the same Shared Work Queue. Performing a copy with source
and destination being Node 0, executed by the DSA on Node 0. 15

3.6 Copy from Node 0 to the destination Node specified on the x-axis. Shows
peak throughput achievable with DSA for different load balancing techniques. 17

3.7 Scalability Analysis for different amounts of participating DSAs. Displays
the average throughput and the derived scaling factor. Shows that,
although the throughput does increase with adding more accelerators,
beyond two, the gained speed drops significantly. Calculated over the
results from Figure 3.6 and therefore applies to copies from DDR-SDRAM
to HBM. 18

XI

XII / 44 List of Figures

3.8 Throughput from DDR-SDRAM to HBM on CPU. Copying from Node 0
to the destination Node specified on the x-axis. 19

4.1 Public Interface of CacheData and Cache Classes. Colour coding for
thread safety. Grey denotes impossibility for threaded access. Green
indicates full safety guarantees only relying on atomics to achieve this.
Yellow may use locking but is still safe for use. Red must be called from
a single threaded context. 21

5.1 Sequence for Blocking Scenario. Observable in first draft implementation.
Scenario where T1 performed first access to a datum followed T2 and
T3. Then T1 holds the handlers exclusively, leading to the other threads
having to wait for T1 to perform the work submission and waiting before
they can access the datum through the cache. 27

5.2 CacheData::WaitOnCompletion Pseudocode. Final rendition of the im-
plementation for a fair wait function. 28

6.1 Time spent on functions SCANa and AGGREGATE without prefetch-
ing for different locations of column b. Figure (a) represents the lower
boundary by using only DDR-SDRAM, while Figure (b) simulates perfect
caching by storing column b in HBM during benchmark setup. 35

6.2 Time spent on functions SCANa, SCANb and AGGREGATE with
prefetching. Operations SCANa and SCANb execute concurrently. Figure
(a) shows bandwidth limitation as time for SCANa increases drastically
due to the copying of column b to HBM taking place in parallel. For
Figure (b), the columns are located on different Nodes, thereby the
SCAN -operations do not compete for bandwidth. 36

ensure figure
placement
at top and
before first
reference

List of Tables

6.1 Table showing raw timing for Query-driven Prefetching (QdP) on DDR-
SDRAM and High Bandwidth Memory (HBM). Result for DDR-SDRAM
serves as baseline while HBM presents the upper boundary achievable
with perfect prefetching. 34

6.2 Table showing Speedup for different QdP Configurations over DDR-
SDRAM. Result for DDR-SDRAM serves as baseline while HBM presents
the upper boundary achievable with perfect prefetching. Prefetching was
performed with the same parameters and data locations as Double Data
Rate Synchronous Dynamic Random Access Memory (DDR-SDRAM),
caching on Node 8 (HBM accessor for the executing Node 0). Prefetching
with Distributed Columns had columns a and b located on different Nodes. 35

XIII

Todo list

ensure figure placement at top and before first reference XII
remove me for final version . XV
paragraph above complicated to read . 27
complicated formulation too, write it with more references to the pseudocode . . 28
wording for subsection is complicated . 30
write our observations and then link to the to-be-added section describing these

updates . 31
dont write about modifying the design but adapt the design and add forward

references there to here to explain necessity 31 remove me
for final ver-
sion

XV

1 Introduction

The proliferation of various technologies, such as Non-Volatile RAM (NVRAM) and
HBM, has ushered in a diverse landscape of systems characterized by varying tiers
of main memory. Extending traditional Non-Uniform Memory Architecture (NUMA),
these systems necessitate the movement of data across memory classes and locations to
leverage the distinct properties offered by the available technologies. The responsibility
for maintaining optimal data placement falls upon the CPU, resulting in a reduction
of available cycles for computational tasks. To mitigate this strain, certain current-
generation Intel server processors feature the Intel Data Streaming Accelerator (DSA), to
which certain data operations may be offloaded [1]. This thesis undertakes the challenge
of optimizing data locality in heterogeneous memory architectures, utilizing the DSA.

The primary objectives of this thesis are twofold. Firstly, it involves a comprehensive
analysis and characterization of the architecture of the Intel DSA. Secondly, the focus
extends to the application of DSA in the domain-specific context of Query-driven
Prefetching (QdP) to accelerate database queries [2].

This work introduces significant contributions to the field. Notably, the design and
implementation of an offloading cache represent a key highlight, providing an interface
for leveraging the strengths of tiered storage with minimal integration efforts. Its design
and implementation make up a large part of this work. This resulted in an architecture
applicable to any use case requiring NUMA-aware data movement with offloading support
to the DSA. Additionally, the thesis includes a detailed examination and analysis of the
strengths and weaknesses of the DSA through microbenchmarks. These benchmarks serve
as practical guidelines, offering insights for the optimal application of DSA in various
scenarios. To our knowledge, this thesis stands as the first scientific work to extensively
evaluate the DSA in a multi-socket system, provide benchmarks for programming through
the Intel Data Mover Library (Intel DML) and evaluate performance for data movement
from DDR-SDRAM to High Bandwidth Memory (HBM).

We begin the work by furnishing the reader with pertinent technical information neces-
sary for understanding the subsequent sections of this work in Chapter 2. Background is
given for HBM and QdP, followed by a detailed account of the DSAs architecture along
with an available programming interface. Additionally, guidance on system setup and
configuration is provided. Subsequently, Chapter 3 analyses the strengths and weaknesses
of the DSA through microbenchmarks. Each benchmark is elaborated upon in detail,
and usage guidance is drawn from the results. Chapters 4 and 5 elucidate the practical
aspects of the work, including the development of the interface and implementation of
the cache, shedding light on specific design considerations and implementation challenges.
We comprehensively assess the implemented solution by providing concrete data on
gains for an exemplary database query in Chapter 6. Finally, Chapter 7 reflects insights
gained, and presents a review of the contributions and results of the preceding chapters.

1

2 Technical Background

This chapter introduces the relevant technologies and concepts for this thesis. The
goal of this thesis is to apply the Intel Data Streaming Accelerator to the concept of
Query-driven Prefetching, therefore we will familiarize ourselves with both. We also give
background on High Bandwidth Memory, which is a secondary memory technology to
the DDR-SDRAM used in current computers.

2.1 High Bandwidth Memory
High Bandwidth Memory is an emerging memory technology that promises an increase
in peak bandwidth. As visible in Figure 2.1, it consists of stacked DDR-SDRAM dies [4,
p. 1] and is gradually being integrated into server processors, with the Intel® Xeon®
Max Series [5] being one recent example. HBM on these systems can be configured in
different memory modes, most notably, ‘HBM Flat Mode’ and ‘HBM Cache Mode’ [5].
The former gives applications direct control, requiring code changes, while the latter
utilizes the HBM as a cache for the system’s DDR-SDRAM-based main memory [5].

Figure 2.1: High Bandwidth Memory Design Layout. Shows that an HBM-module
consists of stacked DRAM and a logic die. [3]

3

4 / 44 CHAPTER 2. TECHNICAL BACKGROUND

(b) Query Execution Pipeline(a) SQL Query

SELECT sum(b)
FROM r
WHERE a < 50

SCANa

σa<50 (FILTER)

PROJECTb←a

SCANb

Gsum(b)

Figure 2.2: Illustration of a simple query in (a) and the corresponding pipeline in (b).
[2, Fig. 1]

2.2 Query-driven Prefetching
QdP introduces a targeted strategy for optimizing database performance by intelligently
prefetching relevant data. To achieve this, QdP analyses queries, splitting them into
distinct sub-tasks, resulting in the so-called query execution plan. An example of a query
and a corresponding plan is depicted in Figure 2.2. From this plan, QdP determines
columns in the database used in subsequent tasks. Once identified, the system proactively
copies these columns into faster memory. For the example (Figure 2.2), column b is
accessed in SCANb and Gsum(b) and column a is only accessed for SCANa. Therefore,
only column b will be chosen for prefetching in this scenario. [2]

Applying pipelining, QdP processes tasks in parallel and in chunks. Therefore, a high
degree of concurrency may be observed, resulting in demand for CPU cycles and memory
bandwidth. As prefetching takes place in parallel with query processing, it creates
additional CPU load, potentially diminishing gains from the acceleration of subsequent
steps through the cached data. For this reason, we intend to offload copy operations to
the DSA in this work, reducing the CPU impact and thereby increasing the performance
gains offered by prefetching. [2]

2.3 Intel Data Streaming Accelerator
Introduced with the 4th generation of Intel Xeon Scalable Processors, the DSA aims to
relieve the CPU from ‘common storage functions and operations such as data integrity
checks and deduplication’ [1, p. 4]. To fully utilize the hardware, a thorough understand-
ing of its workings is essential. Therefore, we present an overview of the architecture,
software, and the interaction of these two components, delving into the architectural
details of the DSA itself. All statements are based on Chapter 3 of the Architecture
Specification by Intel.

2.3. INTEL DATA STREAMING ACCELERATOR 5 / 44

Figure 2.3: Intel Data Streaming Accelerator Internal Architecture. Shows the compon-
ents that the chip is made up of, how they are connected and which outside
components the DSA communicates with. [6, Fig. 1 (a)]

2.3.1 Hardware Architecture

The DSA chip is directly integrated into the processor and attaches via the I/O fabric
interface, serving as the conduit for all communication. Through this interface, the DSA
is accessible and configurable as a PCIe device. In a system with multiple processing
nodes, there may also be one DSA per node, resulting in up to four DSA devices per
socket in 4th generation Intel Xeon Processors [7, Sec. 3.1.1]. To accommodate various
use cases, the layout of the DSA is software-defined. The structure comprises three
components, which we will describe in detail. We also briefly explain how the DSA
resolves virtual addresses and signals operation completion. At last, we will detail
operation execution ordering.

2.3.1.1 Architectural Components

Component I, Work Queue: WQs provide the means to submit tasks to the device
and will be described in more detail shortly. They are marked yellow in Figure 2.3. A
Work Queue (WQ) is accessible through so-called portals, light blue in Figure 2.3, which
are mapped memory regions. Submission of work is done by writing a descriptor to
one of these. A descriptor is 64 bytes in size and may contain one specific task (task
descriptor) or the location of a task array in memory (batch descriptor). Through these
portals, the submitted descriptor reaches a queue. There are two possible queue types
with different submission methods and use cases. The Shared Work Queue (SWQ) is
intended to provide synchronized access to multiple processes and each group may only
have one attached. The method used to achieve this guarantee may result in higher

6 / 44 CHAPTER 2. TECHNICAL BACKGROUND

submission cost [8, Sec. 3.3.1], compared to the Dedicated Work Queue (DWQ) to which
a descriptor is submitted via a regular write [8, Sec. 3.3.2].

Component II, Engine: An Engine is the processing-block that connects to memory
and performs the described task. To handle the different descriptors, each Engine has two
internal execution paths. One for a task and the other for a batch descriptor. Processing
a task descriptor is straightforward, as all information required to complete the operation
are contained within [8, Sec. 3.2]. For a batch, the DSA reads the batch descriptor, then
fetches all task descriptors from memory and processes them [8, Sec. 3.8]. An Engine
can coordinate with the operating system in case it encounters a page fault, waiting on
its resolution, if configured to do so, while otherwise, an error will be generated in this
scenario [8, Sec. 2.2, Block on Fault].

Component III, Groups: Groups tie Engines and Work Queues together, indicated
by the dotted blue line around the components of Group 0 in Figure 2.3. This means, that
tasks from one WQ may be processed from multiple Engines and vice-versa, depending
on the configuration. This flexibility is achieved through the Group Arbiter, represented
by the orange block in Figure 2.3, which connects the two components according to the
user-defined configuration.

2.3.1.2 Virtual Address Resolution

An important aspect of computer systems is the abstraction of physical memory addresses
through virtual memory [9]. Therefore, the DSA must handle address translation because
a process submitting a task will not know the physical location in memory of its data,
causing the descriptor to contain virtual addresses. To resolve these to physical addresses,
the Engine communicates with the Input/Output Memory Management Unit (IOMMU)
to perform this operation, as visible in the outward connections at the top of Figure
2.3. Knowledge about the submitting processes is required for this resolution. Therefore,
each task descriptor has a field for the Process Address Space ID (PASID) which is filled
by the instruction used by SWQ submission [8, Sec. 3.3.1] or set statically after a process
is attached to a DWQ [8, Sec. 3.3.2].

2.3.1.3 Completion Signalling

The status of an operation on the DSA is available in the form of a record, which is
written to a memory location specified in the task descriptor. Applications can check for
a change in value in this record to determine completion. Additionally, completion may
be signalled by an interrupt. To facilitate this, the DSA ‘provides two types of interrupt
message storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2)
a device-specific Interrupt Message Storage (IMS) table’ [8, Sec. 3.7].

2.3.1.4 Ordering Guarantees

Ordering of operations is only guaranteed for a configuration with one WQ and one Engine
in a Group when exclusively submitting batch or task descriptors but no mixture. Even
in such cases, only write-ordering is guaranteed, implying that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’. Challenges arise, when an

2.3. INTEL DATA STREAMING ACCELERATOR 7 / 44

Figure 2.4: Intel Data Streaming Accelerator Software View. Illustrating the software
stack and internal interactions from user applications, through the driver to
the portal for work submission. [6, Fig. 1 (b)]

operation fails, as the DSA will continue to process the following descriptors from the
queue. Consequently, caution is necessary in read-after-write scenarios. This can be
addressed by either waiting for successful completion before submitting the dependent
descriptor, inserting a drain descriptor for tasks, or setting the fence flag for a batch.
The latter two methods inform the processing engine that all writes must be committed,
and in case of the fence in a batch, to abort on previous error. [8, Sec. 3.9]

2.3.2 Software View

Since the Linux Kernel version 5.10, a driver for the DSA has been available, which
currently lacks a counterpart on Windows Operating Systems [10, Sec. Installation]. As
a result, accessing the DSA is only possible under Linux. To interact with the driver and
perform configuration operations, Intel provides the accel-config user-space application
[11]. This toolset offers a command-line interface and can read configuration files to
configure the device, as mentioned in Section 2.3.1. The interaction is illustrated in the
upper block labelled ‘User space’ in Figure 2.4, where it communicates with the kernel
driver, depicted in light green and labelled ‘IDXD’ in Figure 2.4. Once successfully
configured, each WQ is exposed as a character device through mmap of the associated
portal [6, Sec. 3.3].

While a process could theoretically submit work to the DSA by manually preparing
descriptors and submitting them via special instructions, this approach can be cumber-

8 / 44 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.5: Memcpy Implementation Pseudocode. Performs copy operation of a block of
memory from source to destination. The DSA executing this copy can be
selected with the parameter node, and the template parameter path elects
whether to run on hardware (Intel DSA) or software (CPU).

some. Hence, Intel Data Mover Library (Intel DML) exists to streamline this process.
Despite some limitations, such as the lack of support for DWQ submission, this library
offers an interface that manages the creation and submission of descriptors, as well as
error handling and reporting. The high-level abstraction offered, enables compatibility
measures, allowing code developed for the DSA to also execute on machines without the
required hardware [10, Sec. High-level C++ API, Advanced usage].

2.4 Programming Interface for Intel Data Streaming
Accelerator

As mentioned in Section 2.3.2, Intel DML offers a high level interface for interacting
with the hardware accelerator, specifically Intel DSA. Opting for the C++ interface, we
will now demonstrate its usage by example of a simple memcopy implementation for the
DSA.

In the function header of Figure 2.5 two differences from standard memcpy are notable.
Firstly, there is the template parameter named path, and secondly, an additional
parameter int node. Both will be discussed in the following paragraphs.

The path parameter allows the selection of the executing device, which can be either
the CPU or DSA. The options include dml::software (CPU), dml::hardware (DSA),
and dml::automatic, where the latter dynamically selects the device at runtime, favoring
DSA over CPU execution [10, Sec. Quick Start].

Choosing the engine which carries out the copy might be advantageous for performance,
as we can see in Section 3.2.3. This can either be achieved by pinning the current thread

2.5. SYSTEM SETUP AND CONFIGURATION 9 / 44

to the NUMA-Node (Node) that the device is located on, or, or by using optional
parameters of dml::submit [10, Sec. High-level C++ API, NUMA support]. As evident
from Figure 2.5, we chose the former option for this example, using numa_run_on_node
to restrict the current thread to run on the given node. With it only being an example,
potential side effects, arising from modification of NUMA-assignment, of calling this
pseudocode are not relevant.

Intel DML operates on data views, which we create from the given pointers to source
and destination and size. This is done using dml::make_view(uint8_t* ptr, size_t
size), visible in Figure 2.5, where these views are labelled src_view and dst_view. [10,
Sec. High-level C++ API, Make view]

In Figure 2.5, we submit a single descriptor using the asynchronous operation from
Intel DML. This uses the function dml::submit<path>, which takes an operation type
and parameters specific to the selected type and returns a handler to the submitted task.
For the copy operation, we pass the two views created previously. The provided handler
can later be queried for the completion of the operation. After submission, we poll for
the task completion with handler.get() and check whether the operation completed
successfully.

A noteworthy addition to the submission-call is the use of .block_on_fault(), en-
abling the DSA to manage a page fault by coordinating with the operating system. It’s
essential to highlight that this functionality only operates if the device is configured
to accept this flag. [10, Sec. High-level C++ API, How to Use the Library] [10, Sec.
High-level C++ API, Page Fault handling].

2.5 System Setup and Configuration
In this section we provide a step-by-step guide to replicate the configuration being used
for benchmarks and testing purposes in the following chapters. While Intel’s guide
on DSA usage was a useful resource, we also consulted articles for setup on Lenovo
ThinkSystem Servers for crucial information not present in the former. It is important
to note that instructions for configuring the HBM access mode, as mentioned in Section
2.1, may vary from system to system and can require extra steps not covered in the list
below.

1. Set ‘Memory Hierarchy’ to Flat [12, Sec. Configuring HBM, Configuring Flat
Mode], ‘VT-d’ to Enabled in BIOS [7, Sec. 2.1] and, if available, ‘Limit CPU PA
to 46 bits’ to Disabled in BIOS [13, p. 5]

2. Use a kernel with IDXD driver support, available from Linux 5.10 or later [10,
Sec. Installation] and append the following to the kernel boot parameters in grub
config: intel_iommu=on,sm_on [13, p. 5]

3. Evaluate correct detection of DSA devices using dmesg | grep idxd which should
list as many devices as NUMA nodes on the system [13, p. 5]

10 / 44 CHAPTER 2. TECHNICAL BACKGROUND

4. Install accel-config from repository [11] or system package manager and inspect
the detection of DSA devices through the driver using accel-config list -i [13,
p. 6]

5. Create DSA configuration file for which we provide an example under
benchmarks/configuration-files/8n1d1e1w.conf in the accompanying repos-
itory [14] that is also applied for the benchmarks. Then apply the configuration
using accel-config load-config -c [filename] -e [7, Fig. 3-9]

6. Inspect the now configured DSA devices using accel-config list [13, p. 7],
output should match the desired configuration set in the file used

3 Performance Microbenchmarks

In this chapter, we measure the performance of the DSA, with the goal to determine an
effective utilization strategy to apply the DSA to QdP. In Section 3.1 we lay out our
benchmarking methodology, then perform benchmarks in 3.2 and finally summarize our
findings in 3.3. As the performance of the DSA has been evaluated in great detail by
Reese Kuper et al. in [6], we will perform only a limited amount of benchmarks with the
purpose of determining behaviour in a multi-socket system, penalties from using Intel
DML and throughput for transfers from DDR-SDRAM to HBM.

3.1 Benchmarking Methodology
The benchmarks were conducted on a dual-socket server equipped with two Intel Xeon
Max 9468 CPUs, each with 4 Nodes that have access to 16 GiB of HBM and 12 cores.
This results in a total of 96 cores and 128 GiB of HBM. The layout of the system is
visualized in Figure 3.1. For configuring it, we follow Section 2.5. [16]

As Intel DML does not have support for DWQs (see Section 2.4), we run benchmarks
exclusively with access through SWQs. The application written for the benchmarks can
be obtained in source form under the directory benchmarks in the thesis repository [14].

The benchmark performs Node setup as described in Section 2.4 and allocates source
and destination memory on the Nodes passed in as parameters. To avoid page faults
affecting the results, the entire memory regions are written to before the timed part of

Figure 3.1: Xeon Max Layout [15, Fig. 14] for a 2-Socket System when configured with
HBM-Flat. Showing separate Node IDs for manual HBM access and for
Cores and DDR-SDRAM.

11

12 / 44 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

Figure 3.2: Outer Benchmark Procedure Pseudocode. Timing marked with yellow back-
ground. Showing preparation of memory locations, clearing of cache entries,
timing points and synchronized benchmark launch.

the benchmark starts. We therefore also do not use ‘.block_on_fault()’, as we did for
the memcpy-example in Section 2.4.

Timing in the outer loop may display lower throughput than actual. This is the case,
should one of the DSAs participating in a given task finish earlier than the others. We
decided to measure the maximum time and therefore minimum throughput for these
cases, as we want the benchmarks to represent the peak achievable for distributing
one task over multiple engines and not executing multiple tasks of a disjoint set. As a
task can only be considered complete when all subtasks are completed, the minimum
throughput represents this scenario. This may give an advantage to the peak CPU
throughput benchmark we will reference later on, as it does not have this restriction
placed upon it.

To get accurate results, the benchmark is repeated 10 times. Each iteration is timed
from beginning to end, marked by yellow in Figure 3.2. For small task sizes, the iterations
complete in a very short amount of time, which can have adverse effects on the results.
Therefore, we repeat the code of the inner loop for a configurable amount, virtually
extending the duration of a single iteration for these cases. The chosen internal repetition
count is 10.000 for transfers in the range of 1 − 8 KiB, 1.000 for 1 MiB and one for
larger instances.

For all DSAs used in the benchmark, a submission thread executing the inner bench-
mark routine is spawned. The launch is synchronized by use of a barrier for each iteration.
The behaviour in the inner function then differs depending on the submission method
selected which can be a single submission or a batch of given size. This can be seen in

3.2. BENCHMARKS 13 / 44

Figure 3.3: Inner Benchmark Procedure Pseudocode. Showing work submission for single
and batch submission.

Figure 3.3 at the switch statement for ‘mode’. Single submission follows the example
given in Section 2.4, and we therefore do not go into detail explaining it here. Batch
submission works unlike the former. A sequence with specified size is created which tasks
are then added to. This sequence is submitted to the engine similar to the submission of
a single descriptor.

3.2 Benchmarks
In this section, we will introduce three benchmarks, providing setup information and
a brief overview of each. Subsequently, we will present plots illustrating the results,
followed by a comprehensive analysis. Our approach involves formulating expectations
and juxtaposing them with the observations derived from our measurements.

3.2.1 Submission Method

With each submission, descriptors must be prepared and sent to the underlying hardware.
This process is anticipated to incur a cost, impacting throughput sizes and submis-
sion methods differently. We submit different sizes and compare batching with single
submissions, determining which combination of submission method and size is most
effective.

14 / 44 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

1 KiB 4 KiB 1 MiB
Size of Submitted Task

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 in

 G
iB

/s

Submission Type
Single Submit
Batch, Size 10
Batch, Size 50

Figure 3.4: Throughput for different Submission Methods and Sizes. Performing a copy
with source and destination being Node 0, executed by the DSA on Node 0.
Observable is the submission cost which affects small transfer sizes differently,
as there the completion time is lower.

We anticipate that single submissions will consistently yield poorer performance,
particularly with a pronounced effect on smaller transfer sizes. This expectation arises
from the fact that the overhead of a single submission with the SWQ is incurred for every
iteration, whereas the batch experiences this overhead only once for multiple copies.

In Figure 3.4 we conclude that with transfers of 1 MiB and upwards, the cost of
single submission drops. As there is still a slight difference, datum size should be even
larger. For smaller transfers the performance varies greatly, with batch operations leading
in throughput. Reese Kuper et al. observed that ‘SWQ observes lower throughput
between 1− 8 KB [transfer size]’ [6, pp. 6]. We however observe a much higher point of
equalization, pointing to additional delays introduced by programming the DSA through
Intel DML. Another limitation may be observed in this result, namely the inherent
throughput limit per DSA chip of close to 30 GiB/s. This is apparently caused by I/O
fabric limitations [6, p. 5].

3.2.2 Multithreaded Submission

As we might encounter access to one DSA from multiple threads through the associated
Shared Work Queue, understanding the impact of this type of access is crucial. We
benchmark multithreaded submission for one, two, and twelve threads, with the latter
representing the core count of one processing sub-node on the test system. We spawn
multiple threads, all submitting to one DSA. Furthermore, we perform this benchmark
with sizes of 1 MiB and 1 GiB to examine, if the behaviour changes with submission
size. For smaller sizes, the completion time may be faster than submission time, leading
to potentially different effects of threading due to the fact that multiple threads work

3.2. BENCHMARKS 15 / 44

1 Thread 2 Threads 12 Threads
Thread Count

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 in

 G
iB

/s

Transfer Size
1 MiB
1 GiB

Figure 3.5: Throughput for different Thread Counts and Sizes. Multiple threads submit
to the same Shared Work Queue. Performing a copy with source and
destination being Node 0, executed by the DSA on Node 0.

to fill the queue, preventing task starvation. We may also experience lower-than-peak
throughput with rising thread count, caused by the synchronization inherent with SWQ.

In Figure 3.5, we note that threading has no discernible negative impact. The
synchronization appears to affect single-threaded access in the same manner as it does
for multiple threads. Interestingly, for the smaller size of 1 MiB, our assumption proved
accurate, and performance increased with the addition of threads, which we attribute to
enhanced queue usage. We ascribe the higher throughput observed with 1 GiB to the
submission delay which is incurred more frequently with lower transfer sizes.

3.2.3 Data Movement from DDR-SDRAM to HBM

Moving data from DDR-SDRAM to HBM is most relevant to the rest of this work, as it
is the target application. With HBM offering higher bandwidth than the DDR-SDRAM
of our system, we will be restricted by the available bandwidth of the source. To
determine the upper limit achievable, we must calculate the available peak bandwidth.
For each Node, the test system is configured with two DIMMs of DDR5-4800. The
naming scheme contains the data rate in Megatransfers per second, however the processor
specification notes that, for dual channel operation, the maximum supported speed drops
to 4400 MT/s [16]. We calculate the transfers performed per second for one Node,
followed by the bytes per transfer [17] and at last combine these two for the theoretical
peak bandwidth per Node on the system.

2 DIMM × 4400 MT

s × DIMM
= 8800 MT/s

16 / 44 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

64b

8b/B
/ T = 8 B/T

8800 MT/s× 8B/T = 70400× 106B/s = 65.56 GiB/s

From the observed bandwidth limitation of a single DSA situated at about 30 GiB/s
(see Section 3.2.1) and the available memory bandwidth of 65.56/GiB/s, we conclude
that a copy task has to be split across multiple DSAs to achieve peak throughput.
Different methods of splitting will be evaluated. Given that our system consists of
multiple sockets, communication crossing between sockets could introduce latency and
bandwidth disadvantages [18], which we will also evaluate. Beyond two DSA, marginal
gains are to be expected, due to the throughput limitation of the available memory.

To determine the optimal amount of DSAs, we will measure throughput for one, two,
four, and eight participating in the copy operations. We name the utilization of two
DSAs ‘Push-Pull’, as with two accelerators, we utilize the ones found on data source
and destination Node. As eight DSAs is the maximum available on our system, this
configuration will be referred to as ‘brute-force’.

For this benchmark, we transfer 1 GiBibyte of data from Node 0 to the destination
Node. We present data for Nodes 8, 11, 12, and 15. To understand the selection, see
Figure 3.1, which illustrates the Node IDs of the configured systems and the corresponding
storage technology. Node 8 accesses the HBM on Node 0, making it the physically closest
possible destination. Node 11 is located diagonally on the chip, representing the farthest
intra-socket operation benchmarked. Nodes 12 and 15 lie diagonally on the second
socket’s CPU, making them representative of inter-socket transfer operations.

We begin by examining the common behaviour of load balancing techniques depicted
in Figure 3.6. The real-world peak throughput of 64 GiB/s approaches the calculated
available bandwidth. In Figure 3.6a, a notable hard bandwidth limit is observed, just
below the 30 GiB/s mark, reinforcing what was encountered in Section 3.2.1: a single
DSA is constrained by I/O-Fabric limitations.

Unexpected throughput differences are evident for all configurations, except the
bandwidth-bound single DSA. Notably, Node 8 performs worse than copying to Node
11. As Node 8 serves as the HBM accessor for the data source Node, it should have the
shortest data path. This suggests that the DSA may suffer from sharing parts of the
data path for reading and writing. Another interesting observation is that, contrary to
our assumption, the physically more distant Node 15 achieves higher throughput than
the closer Node 12. We lack an explanation for this anomaly and will further examine
this behaviour in the analysis of the CPU throughput results in Section 3.2.4.

For the results of the Brute-Force approach illustrated in Figure 3.6d, we observe
peak speeds when copying across sockets from Node 0 to Node 15. This contradicts
our assumption that peak bandwidth would be limited by the interconnect. However,
for intra-node copies, there is an observable penalty for using the off-socket DSAs. We
will analyse this behaviour by comparing the different benchmarked configurations and
summarize our findings on scalability.

3.2. BENCHMARKS 17 / 44

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s

(a) One DSA: DSA on
source Node.

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s

(b) Two DSAs, or
‘Push-Pull’: us-
ing the DSA on
source and destin-
ation Node except
intra-node using
the on-node and
one off-node.

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s

(c) Four DSAs: using
four on-socket
DSA for intra-
socket and two
on each socket for
inter-socket.

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s

(d) Eight DSAs or
‘Brute-Force’: us-
ing all available
DSA, irrespective
of source and des-
tination locations.

Figure 3.6: Copy from Node 0 to the destination Node specified on the x-axis. Shows
peak throughput achievable with DSA for different load balancing techniques.

When comparing the Brute-Force approach with Push-Pull in Figure 3.7b, average
performance decreases by utilizing four times more resources over a longer duration. As
shown in Figure 3.6b, using Brute-Force still leads to a slight increase in throughput
for inter-socket operations, although far from scaling linearly. Therefore, we conclude
that, although data movement across the interconnect incurs additional cost, no hard
bandwidth limit is observable, reaching the same peak speed also observed for intra-socket
with four DSAs. This might point to an architectural advantage, as we will encounter
the expected speed reduction for copies crossing the socket boundary when executed on
the CPU in Section 3.2.4.

From the average throughput and scaling factors in Figure 3.7, it becomes evident
that splitting tasks over more than two DSAs yields only marginal gains. This could
be due to increased congestion of the overall interconnect, however, as no hard limit is
encountered, this is not a definitive answer.

The choice of a load balancing method is not trivial. Consulting Figure 3.7a, the
highest throughput is achieved by using four DSAs. At the same time, this causes
high system utilization, making it unsuitable for situations where resources are to be
distributed among multiple control flows. For this case, Push-Pull achieves performance
close to the real-world peak while also not wasting resources due to poor scaling (see
Figure 3.7b).

3.2.4 Data Movement using CPU

For evaluating CPU copy performance we use the benchmark code from the previous
Section (Section 3.2.3), selecting the software instead of hardware execution path (see

18 / 44 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

1 2 4 8
Count of DSAs

15

30

45

60
65

Av
er

ag
e

Th
ro

ug
hp

ut
 in

 G
iB

/s

(a) Average Throughput for differ-
ent amounts of participating
DSA.

1 2 4 8
Count of DSAs

1.0

1.2

1.4

1.6

1.8

2.0

Sc
al

in
g

Fa
ct

or
(b) Scaling Factor for different

amounts of participating DSA.
Calculated by dividing the
throughput for a configuration
by the throughput achieved
with one DSA. Linear scaling
is desirable to not waste re-
sources, therefore only the con-
figurations with one and two
DSAs are determined to be ef-
fective.

Figure 3.7: Scalability Analysis for different amounts of participating DSAs. Displays
the average throughput and the derived scaling factor. Shows that, although
the throughput does increase with adding more accelerators, beyond two,
the gained speed drops significantly. Calculated over the results from Figure
3.6 and therefore applies to copies from DDR-SDRAM to HBM.

Section 2.3.2). Colleagues performed extensive benchmarking of the peak throughput on
CPU for the test system [19], from which we will present results as well. We compare
expectations and results from the previous Section with the measurements.

As evident from Figure 3.8a, the observed throughput of software path is less than half
of the theoretical bandwidth. Therefore, software path is to be treated as a compatibility
measure, and not for providing high performance data copy operations. In Figure 3.8b,
peak throughput is achieved for intra-node operation, validating the assumption that
there is a cost for communicating across sockets, which was not as directly observable
with the DSA. The same disadvantage for Node 12, as observed in Section 3.2.3, can be
seen in Figure 3.8. This points to an architectural anomaly which we could not explain
with our knowledge or benchmarks. Further benchmarks were conducted for this, not
yielding conclusive results, as the source and copy-thread location did not seem to affect
the observed speed delta.

3.3. ANALYSIS 19 / 44

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s

(a) DML code for allnodes running
on software path.

8 11 12 15
Destination Node

15

30

45

60
65

Th
ro

ug
hp

ut
 in

 G
iB

/s
(b) Colleague’s CPU peak

throughput benchmark [19]
results.

Figure 3.8: Throughput from DDR-SDRAM to HBM on CPU. Copying from Node 0 to
the destination Node specified on the x-axis.

3.3 Analysis
In this section we summarize the conclusions from the performed benchmarks, outlining
a utilization guideline.

• From 3.2.1 we conclude that small copies under 1 MiB in size require batching
and still do not reach peak performance. Task size should therefore be at or above
1 MiB. Otherwise, offloading might prove more expensive than performing the
copy on CPU.

• Section 3.2.2 assures that access from multiple threads does not negatively affect
the performance when using Shared Work Queue for work submission. Due to the
lack of Dedicated Work Queue support, we have no data to determine the cost of
submission to the SWQ.

• In 3.2.3, we found that using more than two DSAs results in only marginal gains.
The choice of a load balancer therefore is the Push-Pull configuration, as it achieves
fair throughput with low utilization.

• Combining the result from Sections 3.2.3 and 3.2.1, we posit that for situations
with smaller transfer sizes and a high amount of tasks, splitting a copy might
prove disadvantageous. Due to incurring more delay from submission and overall
throughput still remaining high without the split due to queue filling (see Section
3.2.2), the split might reduce overall effectiveness. To still utilize the available

20 / 44 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

resources effectively, distributing tasks across the available DSAs is still desirable.
This finding lead us to implement round-robin balancing in Section 5.2.

Once again, we refer to Figures 3.6 and 3.8, both representing the maximum throughput
achieved with the utilization of either DSA for the former and CPU for the latter.
Noticeably, the DSA does not seem to suffer from inter-socket overhead like the CPU.
The DSA performs similar to the CPU for intra-node data movement, while outperforming
it in inter-node scenarios. The latter, as mentioned in Section 3.2.3, might point to an
architectural advantage of the DSA. The performance observed in the above benchmarks
demonstrates potential for rapid data movement while simultaneously relieving the CPU
of this task and thereby freeing capacity then available for computation.

We encountered an anomaly on Node 12 for which we were unable to find an explanation.
Since this behaviour is also observed on the CPU, identifying the root cause falls beyond
the scope of this work. Despite being unable to account for all measurements, this
chapter still offers valuable insights into the performance of the DSA, highlighting both
its strengths and weaknesses. It provides data-driven guidance for a complex architecture,
aiding in determining the optimal approach for optimal utilization of the DSA.

CacheData

CacheData(uint8_t* data, size_t size)

CacheData(const CacheData& other)

~CacheData()

void WaitOnCompletion()

uint8_t* GetDataLocation() const

Cache

Cache() = default

void Flush(int node = -1)

~Cache()

void Init(CachePolicy*, CopyPolicy*,
MemFree*, MemAlloc*)

std::unique_ptr<CacheData>
Access(uint8_t* data, size_t size)

void Clear()

void Invalidate()

Figure 4.1: Public Interface of CacheData and Cache Classes. Colour coding for thread
safety. Grey denotes impossibility for threaded access. Green indicates full
safety guarantees only relying on atomics to achieve this. Yellow may use
locking but is still safe for use. Red must be called from a single threaded
context.

4 Design

In this chapter, we formulate a class interface for a general-purpose cache. We will outline
the requirements and elucidate the solutions employed to address them, culminating in
the final architecture. Details pertaining to the implementation of this blueprint will be
deferred to Chapter 5, where we delve into a selection of relevant aspects.

The target application of code contributed by this work is to accelerate Query-driven
Prefetching by offloading copy operations to the DSA. Prefetching is inherently related
with cache functionality. Given that an application providing the latter offers a broader
scope of utility beyond QdP, we opted to implement an offloading Cache.

4.1 Interface
The interface of Cache must provide three basic functions: (1) requesting a memory
block to be cached, (2) accessing a cached memory block and (3) synchronizing cache
with the source memory. The latter operation comes in to play when the data that is

21

22 / 44 CHAPTER 4. DESIGN

cached may also be modified, necessitating synchronization. Due to various setups and
use cases for this cache, the user should also be responsible for choosing cache placement
and the copy method. As re-caching is resource intensive, data should remain in the
cache for as long as possible. We only flush entries, when lack of free cache memory
requires it.

Given that this work primarily focuses on caching static data, we only provide
cache invalidation and not synchronization. The Cache::Invalidate function, given a
memory address, will remove all entries for it from the cache. The other two operations,
caching and access, are provided in one single function, which we shall henceforth call
Cache::Access. This function receives a data pointer and size as parameters and takes
care of either submitting a caching operation if the pointer received is not yet cached or
returning the cache entry if it is.

Given the asynchronous nature of caching operations, users may opt to await their
completion. This proves particularly beneficial when parallel threads are actively pro-
cessing, and the current thread strategically pauses until its data becomes available in
faster memory, thereby optimizing access speeds for local computations. To facilitate
this process, the Cache::Access method returns an instance of an object referred to as
CacheData. Figure 4.1 documents the public interface for CacheData on the left block
labelled as such. Invoking CacheData::GetDataLocation provides access to a pointer
to the location of the cached data. Additionally, the CacheData::WaitOnCompletion
method is available, designed to return only upon the completion of the caching operation.
During this period, the current thread will sleep, allowing unimpeded progress for other
threads. To ensure that only pointers to valid memory regions are returned, this function
must be called in order to update the cache pointer which otherwise has an undefined
value. It queries the completion state of the operation, and, on success, updates the
cache pointer to the then available memory region.

4.1.1 Policy Functions

In the introduction of this chapter, we mentioned placing cache placement and selecting
copy-participating DSAs in the responsibility of the user. As we will find out in
Section 5.2, allocating memory inside the cache is not feasible due to possible delays
encountered. Therefore, the user is also required to provide functionality for dynamic
memory management to the Cache. The former is realized by what we will call ‘Policy
Functions’, which are function pointers passed on initialization, as visible in Cache::Init
in Figure 4.1. We use the same methodology for the latter, requiring function pointers
performing dynamic memory management be passed. As the choice of cache placement
and copy policy is user-defined, one possibility will be discussed for the implementation
in Chapter 5, while we detail their required behaviour here.

The policy functions receive parameters deemed sensible for determining placement
and participation selection. Both are informed of the source , the requesting caching,
and the data size. The cache placement policy then returns a -ID on which the data is
to be cached, while the copy policy will provide the cache with a list of -IDs, detailing
which DSAs should participate in the operation.

4.2. USAGE RESTRICTIONS 23 / 44

For memory management, two functions are required, providing allocation (malloc)
and deallocation (free) capabilities to the Cache. Following the naming scheme, these
two functions must adhere to the thread safety guarantees and behaviour set forth by the
C++ standard. Most notably, malloc must never return the same address for subsequent
or concurrent calls.

4.1.2 Cache Entry Reuse

When multiple consumers wish to access the same memory block through the Cache,
we face a choice between providing each with their own entry or sharing one for all
consumers. The first option may lead to high load on the accelerator due to multiple
copy operations being submitted and also increases the memory footprint of the cache.
The latter option, although more complex, was chosen to address these concerns. To
implement this, the existing CacheData will be extended in scope to handle multiple
consumers. Copies of it can be created, and they must synchronize with each other for
CacheData::WaitOnCompletion and CacheData::GetDataLocation. This is illustrated
by the green markings, indicating thread safety guarantees for access, in Figure 4.1. The
Cache must therefore also ensure that, on concurrent access to the same resource, only
one thread creates CacheData while the others are provided with a copy.

4.1.3 Cache Entry Lifetime

Allowing multiple references to the same entry introduces concerns regarding memory
management. The allocated block should only be freed when all copies of a CacheData
instance are destroyed, thereby tying the cache entry’s lifetime to the longest living copy
of the original instance. This ensures that access to the entry is legal during the lifetime
of any CacheData instance. Therefore, deallocation only occurs when the last copy of a
CacheData instance is destroyed.

4.2 Usage Restrictions
In the context of this work, the cache primarily manages static data, leading to two
restrictions placed on the invalidation operation, allowing significant reductions in design
complexity. Firstly, due to the cache’s design, overlapping areas in the cache will lead
to undefined behaviour during the invalidation of any one of them. Only entries with
equivalent source pointers will be invalidated, while other entries with differing source
pointers, still covering the now-invalidated region due to their size, will remain unaffected.
Consequently, the cache may or may not continue to contain invalid elements. Secondly,
invalidation is a manual process, necessitating the programmer to recall which data
points are currently cached and to invalidate them upon modification. In this scenario,
no ordering guarantees are provided, potentially resulting in threads still holding pointers
to now-outdated entries and continuing their progress with this data.

Additionally, the cache inherits some restrictions due to its utilization of the DSA.
As mentioned in Section 2.3.1.4, only write-ordering is guaranteed under specific cir-
cumstances. Although we configured the necessary parameters for this guarantee in

24 / 44 CHAPTER 4. DESIGN

Section 2.5, load balancing over multiple DSAs, as described in Section 5.2, can introduce
scenarios where writes to the same address may be submitted on different accelerators.
As the ordering guarantee is provided on only one DSA, undefined behaviour can occur
in ‘multiple-writers’, in addition to the ‘read-after-write’ scenarios. However, due to
the constraints outlined in Section 4.1, the ‘multiple-writers’ scenario is prevented, by
ensuring that only one thread can perform the caching task for a given datum. Moreover,
the requirement for user-provided memory management functions to be thread-safe
(Section 4.1.1) ensures that two concurrent cache accesses will never receive the same
memory region for their task. These two guarantees in conjunction secure the caches’
integrity. Hence, the only relevant scenario is ‘read-after-write’, which is also accounted
for since the cache pointer is updated by CacheData::WaitOnCompletion only when all
operations have concluded. Situations where a caching task (read) depending on the
results of another task (write) are thereby prevented.

Despite accounting for the complications in operation ordering, one potential situation
may still lead to undefined behaviour. Since the DSA operates asynchronously, modifying
data for a region present in the cache before ensuring that all caching operations have
completed through a call to CacheData::WaitOnCompletion will result in an undefined
state for the cached region. Therefore, it is imperative to explicitly wait for data present
in the cache to avoid such scenarios.

5 Implementation

In this chapter, we concentrate on specific implementation details, offering an in-depth
view of how the design promises outlined in Chapter 4 are realized. Firstly, we delve
into the usage of locking and atomics to achieve thread safety. Finally, we apply the
cache to Query-driven Prefetching, detailing the policies mentioned in Section 4.1.1 and
presenting solutions for the challenges encountered.

5.1 Synchronization for Cache and CacheData
The usage of locking and atomics to achieve safe concurrent access has proven to be
challenging. Their use is performance-critical, and mistakes may lead to deadlock.
Consequently, these aspects constitute the most interesting part of the implementation,
which is why this chapter will extensively focus on the details of their implementation.

Throughout the following sections we will use the term ‘handler’, which was coined
by Intel DML, referring to an object associated with an operation on the accelerator.
Through it, the state of a task may be queried, making the handler our connection to the
asynchronously executed task. Use of a handler is also displayed in the memcpy-function
for the DSA as shown in Figure 2.5. As we may split up one single copy into multiple
distinct tasks for submission to multiple DSAs, CacheData internally contains a vector
of multiple of these handlers.

5.1.1 Cache: Locking for Access to State

To keep track of the current cache state the Cache will hold a reference to each currently
existing CacheData instance. The reason for this is twofold: In Section 4.1 we decided to
keep elements in the cache until forced by Memory Pressure to remove them. Secondly in
Section 4.1.2 we decided to reuse one cache entry for multiple consumers. The second part
requires access to the structure holding this reference to be thread safe when accessing
and modifying the cache state in Cache::Access, Cache::Flush and Cache::Clear.
The latter two both require unique locking, preventing other calls to Cache from making
progress while the operation is being processed. For Cache::Access the use of locking
depends upon the caches state. At first, only a shared lock is acquired for checking
whether the given address already resides in cache, allowing other Cache::Access-
operations to also perform this check. If no entry for the region is present, a unique lock
is required as well when adding the newly created entry to cache.

A map was chosen as the data structure to represent the current cache state with the
key being the memory address of the entry and as value the CacheData instance. As
the caching policy is controlled by the user, one datum may be requested for caching in

25

26 / 44 CHAPTER 5. IMPLEMENTATION

multiple locations. To accommodate this, one map is allocated for each available NUMA-
Node of the system. This can be exploited to reduce lock contention by separately locking
each Node’s state instead of utilizing a global lock. This ensures that Cache::Access can
not hinder progress of caching operations on other Nodes, while also reducing potential
for lock contention by spreading the load over multiple locks.

Even with this optimization, in scenarios where the Cache is frequently tasked with
flushing and re-caching by multiple threads from the same node, lock contention will
negatively impact performance by delaying cache access. Due to passive waiting, this
impact might be less noticeable when other threads on the system are able to make
progress during the wait.

5.1.2 CacheData: Shared Reference

The choice made in 4.1.2 necessitates thread-safe shared access to the same resource.
The C++ standard library provides std::shared_ptr<T>, a reference-counted pointer
that is thread-safe for the required operations [20], making it a suitable candidate for
this task. Although an implementation using it was explored, it presented its own set of
challenges. Using std::shared_ptr<T> additionally introduces uncertainty, relying on
the implementation to be performant. The standard does not specify whether a lock-free
algorithm is to be used, and [21] suggests abysmal performance for some implementations.
Therefore, the decision was made to implement atomic reference counting for CacheData.
This involves providing a custom constructor and destructor wherein a shared atomic
integer is either incremented or decremented using atomic fetch sub and add operations
to modify the reference count. In the case of a decrease to zero, the destructor was called
for the last reference and then performs the actual destruction.

5.1.3 CacheData: Fair and Threadsafe WaitOnCompletion

As Section 4.1.2 details, we intend to share a cache entry between multiple threads, neces-
sitating synchronization between multiple instances of CacheData for waiting on operation
completion and determining the cache location. While the latter is easily achieved by mak-
ing the cache pointer a shared atomic value, the former proved to be challenging. There-
fore, we will iteratively develop our implementation for CacheData::WaitOnCompletion
in this Section. We present the challenges encountered and describe how these were
solved to achieve the fairness and thread safety we desire.

We assume the handlers of Intel DML to be unsafe for access from multiple
threads, as no guarantees were found in the documentation. To achieve the safety
for CacheData::WaitOnCompletion, outlined in Section 4.1.2, threads need to coordin-
ate on a master thread which performs the actual waiting, while the others wait on the
master.

Upon call to Cache::Access, coordination must again take place to only add one
instance of CacheData to the cache state and, most importantly, submit to the DSA
only once. This behaviour was elected in Section 4.1.2 to reduce the load placed on the
accelerator by preventing duplicate submission. To solve this, Cache::Access will add
the instance to the cache state under unique lock (see Section 5.1.1 above) and only

5.1. SYNCHRONIZATION FOR CACHE AND CACHEDATA 27 / 44

CacheData Thread 1

WaitOnCompletion

Thread 2 Thread 3

WaitOnCompletion

Add Handlers

WaitOnCompletion

atomic wait on
cache update

return

return

return T1

return T2

return

Figure 5.1: Sequence for Blocking Scenario. Observable in first draft implementation.
Scenario where T1 performed first access to a datum followed T2 and T3.
Then T1 holds the handlers exclusively, leading to the other threads having
to wait for T1 to perform the work submission and waiting before they can
access the datum through the cache.

then, when the current thread is guaranteed to be the holder of the unique instance,
submission will take place. Thereby, the cache state may containCacheData without a
valid cache pointer and no handlers available to wait on. As the following paragraph
and sections demonstrate, this resulted in implementation challenges.

In the first implementation, a thread would check if the handlers are available and
atomically wait on a value change from nullptr, if they are not. As the handlers are
only available after submission, a situation could arise where only one copy of CacheData
is capable of actually waiting on them. To illustrate this, an exemplary scenario is used,
as seen in the sequence diagram Figure 5.1. Assume that three threads T1, T2 and T3

wish to access the same resource. T1 is the first to call CacheData::Access and therefore
adds it to the cache state and will perform the work submission. Before T1 may submit
the work, it is interrupted and T2 and T3 obtain access to the incomplete CacheData
on which they wait, causing them to see a nullptr for the handlers but invalid cache
pointer, leading to atomic wait on the cache pointer (marked blue lines in Figure 5.1).
T1 submits the work and sets the handlers (marked red lines in Figure 5.1), while T2 and
T3 continue to wait. Therefore, only T1 can trigger the waiting and is therefore capable
of keeping T2 and T3 from progressing. This is undesirable as it can lead to deadlocking
if by some reason T1 does not wait and at the very least may lead to unnecessary delay
for T2 and T3 if T1 does not wait immediately. paragraph

above com-
plicated to
read

As a solution for this, a more intricate implementation is required. When waiting,
the threads now immediately check whether the cache pointer contains a valid value
and return if it does, as nothing has to be waited for in this case. We will use the same
example as before to illustrate the second part of the waiting procedure. Both T2 and

28 / 44 CHAPTER 5. IMPLEMENTATION

Figure 5.2: CacheData::WaitOnCompletion Pseudocode. Final rendition of the imple-
mentation for a fair wait function.

T3 arrive in this latter section as the cache was invalid at the point in time when waiting
was called for. They now atomically wait on the handlers-pointer to change, instead of
doing it the other way around as before. Now when T1 supplies the handlers, it also uses
std::atomic<T>::notify_one to wake at least one thread waiting on value change of
the handlers-pointer, if there are any. Through this the exclusion that was observable
in the first implementation is already avoided. If nobody is waiting, then the handlers
will be set to a valid pointer and a thread may pass the atomic wait instruction later
on. Following this wait, the handlers-pointer is atomically exchanged with nullptr,
invalidating it. Each thread again checks whether it has received a valid local pointer to
the handlers from the exchange. If it has then the atomic operation guarantees that is
now in sole possession of the pointer. The owning thread is tasked with actually waiting.
All other threads will now regress and call CacheData::WaitOnCompletion again. The
solo thread may proceed to wait on the handlers and should update the cache pointer.complicated

formulation
too, write it
with more
references to
the pseudo-
code

5.1. SYNCHRONIZATION FOR CACHE AND CACHEDATA 29 / 44

5.1.4 CacheData: Edge Cases and Deadlocks

With the outlines of a fair implementation of CacheData::WaitOnCompletion drawn, we
will now move our focus to the safety of CacheData. Specifically the following Sections
will discuss possible deadlocks and their resolution.

5.1.4.1 Initial Invalid State

We previously mentioned the possibly problematic situation where both the cache pointer
and the handlers are not yet available for an instance in CacheData. This situation is
avoided explicitly by the implementation due to waiting on the handlers being atomically
updated from nullptr to valid. When the handlers will be set in the future by the
thread calling Cache::Access first, progress is guaranteed.

5.1.4.2 Invalid State on Immediate Destruction

The previous Section discussed the initial invalid state and noted that, as long as the
handlers will be set in the future, progress is guaranteed. We now discuss the situation
where handlers will not be set. This situation is encountered when a memory region is
accessed by threads T1 and T2 concurrently. One will win the data race to add the entry
to the cache state, we choose T1. T2 then must follow Section 4.1.2 and return the entry
already present in cache state. Therefore, T2 has to destroy the CacheData instance it
created previously.

The destructor of CacheData waits on operation completion in order to ensure that no
running jobs require the cache memory region, before deallocating it. This necessitates
usability of CacheData::WaitOnCompletion for the case of immediate destruction. As
the instance of CacheData is destroyed immediately, no tasks will be submitted to the
DSA and therefore handlers never become available, leading to deadlock on destruction.

To circumvent this deadlock, the initial state of CacheData was modified to be safe
for deletion. An initialization function was added to CacheData, which is required to be
called when the instance is to be used.

5.1.4.3 Invalid State on Operation Failure

CacheData::WaitOnCompletion first checks for a valid cache pointer and then waits on
the handlers becoming valid. To process the handlers, the global atomic pointer is read
into a local copy and then set to nullptr using std::atomic<T>::exchange. During
evaluation of the handlers completion states, an unsuccessful operation may be found.
In this case, the cache memory region remains invalid and may therefore not be used,
resulting in both the handlers and the cache pointer being nullptr. This results in an
invalid state, like the one discussed in Section 5.1.4.1. In this invalid state, progress is
not guaranteed by the measures set forth to handle the initial invalidity. The cache is
still nullptr and as the handlers have already been set and processed, they will also be
nullptr without the chance of them ever becoming valid. The employed solution can
be seen in Figure 5.2, where after processing the handlers we check for errors in their
results and upon encountering an error, the cache pointer is set to the data source. Other

30 / 44 CHAPTER 5. IMPLEMENTATION

threads could have accumulated, waiting for the cache to become valid, as the handlers
were already invalidated before. By setting the cache to a valid value, these threads are
released and any subsequent calls to CacheData::WaitOnCompletion will immediately
return. Therefore, the Cache does not guarantee that data will actually be cached,
however, as Chapter 4 does not make such a promise, we decided on implementing this
edge case handling.

5.1.4.4 Locally Invalid State due to Race Condition
wording for
subsection is
complicated

The guarantee of std::atomic<T>::wait to only wake up when the value has changed
[22] was found to be stronger than the promise of waking up all waiting threads with
std::atomic<T>::notify_all [23]. As visible in Figure 5.2, we wait while the handlers-
pointer is nullptr, if the cache pointer is invalid. To exemplify we use the following
scenario. Both T1 and T2 call CacheData::WaitOnCompletion, with T1 preceding T2.
T1 exchanges the global handlers-pointer with nullptr, invalidating it. Before T1 can
check the status of the handlers and update the cache pointer, T2 sees an invalid cache
pointer and then waits for the handlers becoming available.

This has again caused a similar state of invalidity as the previous two Sections handled.
As the handlers will not become available again due to being cleared by T1, the second
consumer, T2, will now wait indefinitely. This missed update is commonly referred to as
‘ABA-Problem’ for which multiple solutions exist.

One could use double-width atomic operations and introduce a counter which would
allow resetting the pointer back to null while setting a flag indicating the exchange took
place. The handlers-pointer would then be contained in a struct with this flag, allowing
exchange with a composite of nullptr and flag-set. Other threads then would then wait
on the struct changing from nullptr and flag-unset, allowing them to pass if either the
flag is set or the handlers have become non-null. As standard C++ does not yet support
the required operations, we chose to avoid the missed update differently. [24]

The chosen solution for this is to not exchange the handlers-pointer with nullptr
but with a second invalid value. We must determine a secondary invalid pointer for
use in the exchange. Therefore, we introduce a new attribute, of the same type as the
one pointed to by the handlers-pointer, to Cache. The Cache then shares it with each
instance of CacheData, where it is then used in CacheData::WaitOnCompletion.

This secondary value allows T2 to pass the wait, then perform the exchange of handlers
itself. T2 then checks the local copy of the handlers-pointer for validity. The invalid state
now includes both nullptr and the secondary invalid pointer chosen. With this, the
deadlock is avoided and T2 will wait for T1 completing the processing of the handlers.

5.2 Application to Query-driven Prefetching
Applying the Cache to QdP is a straightforward process. We adapted the benchmarking
code developed by Anna Bartuschka and André Berthold [2], invoking Cache::Access
for both prefetching and cache access. Due to the high amount of smaller submissions,
we decided to forego splitting of tasks unto multiple DSA and instead distribute the
copy tasks per thread in round-robin fashion. This causes less delay from submission

5.2. APPLICATION TO QUERY-DRIVEN PREFETCHING 31 / 44

cost which, as shown in Section 3.2.1, rises with smaller tasks. The cache location is
fixed to Node 8, the HBM accessor of Node 0 to which the application will be bound
and therefore exclusively run on.

During the performance analysis of the developed Cache, we discovered that Intel
DML does not utilize interrupt-based completion signalling (Section 2.3.1.3), but instead
employs busy-waiting on the completion descriptor being updated. Given that this
busy waiting incurs CPU cycles, waiting on task completion is deemed impractical,
necessitating code modifications. We extended CacheData and Cache to incorporate
support for weak waiting. By introducing a flag configurable in Cache, all instances
of CacheData created via Cache::Access will check only once whether the DSA has
completed processing Cache operation, and if not, return without updating the cache-
pointer. Consequently, calls to CacheData::GetDataLocation may return nullptr even
after waiting, placing the responsibility on the user to access the data through its source
location. For applications prioritizing latency, Cache::Access offers the option for weak
access. When activated, the function returns only existing instances of CacheData,
thereby avoiding work submission to the DSA if the address has not been previously
cached or was flushed since the last access. Using these two options, we can avoid work
submission and busy waiting where access latency is paramount. write our

observations
and then
link to the
to-be-added
section de-
scribing
these up-
dates

Additionally, we observed inefficiencies stemming from page fault handling. Task
execution time increases when page faults are handled by the DSA, leading to cache
misses. Consequently, our execution time becomes bound to that of DDR-SDRAM, as
misses prompt a fallback to the data’s source location. When page faults are handled by
the CPU during allocation, these misses are avoided. However, the execution time of the
first data access through the Cache significantly increases due to page fault handling.
One potential solution entails bypassing the system’s memory management by allocating
a large memory block and implementing a custom memory management scheme. As
memory allocation is a complex topic, we opted to delegate this responsibility to the user
by mandating the provision of new- and free-like functions akin to the policy functions
utilized for determining placement and task distribution. Consequently, the benchmark
can pre-allocate the required memory blocks, trigger page mapping, and subsequently
pass these regions to the Cache. With this we also remove the dependency on libnuma,
mentioned as a restriction in Section ??. dont write

about modi-
fying the
design but
adapt the
design and
add forward
references
there to here
to explain
necessity

6 Evaluation

In this chapter, we establish anticipated outcomes for incorporating the developed Cache
into Query-driven Prefetching, followed by a comprehensive assessment of the achieved
results. The specifics of the benchmark are elaborated upon in Section 5.2. We conclude
with a discussion of the Cache and the results observed.

6.1 Benchmarked Task
The benchmark involves the execution of a simple query, as depicted in Figure 2.2.
We will henceforth denote SCANa as the pipeline responsible for scanning and sub-
sequently filtering column a, SCANb as the pipeline tasked with prefetching column
b and AGGREGATE as the projection and final summation step. The column size
utilized is set at 4 GiB. The workload is distributed across multiple groups, with each
group spawning threads for every pipeline step. To ensure equitable comparison, each
tested configuration employs 64 threads for the initial stage (SCANa and SCANb) and
32 subsequently (AGGREGATE), while being constrained to execute on Node 0 through
pinning. For configurations without prefetching, SCANb is omitted. We measure total
and per-pipeline duration and cache hit percentage for prefetching for 5 iterations with
5 previous warm-up runs, and form the average.

The pipelines SCANa and SCANb execute concurrently, completing their tasks before
signalling AGGREGATE for finalization. In a bid to enhance the cache hit rate, we
opted to relax this constraint, allowing SCANb to operate independently, while only
synchronizing SCANa with AGGREGATE. Consequently, work is submitted to the
DSA as frequently as possible, aiming to complete caching operations for a chunk of b
before SCANa finalizes processing the corresponding part of a. This burst-submission
could cause the DSAs work queue to overrun, leading us to increase the size of the blocks
for the benchmarks utilizing QdP to avoid this.

6.2 Expectations
The simple query presents a challenging scenario for the Cache. The execution time for
the filter operation applied to column a is expected to be brief. Consequently, the Cache
has limited time for prefetching, which may exacerbate delays caused by processing
overhead in the Cache or during accelerator offload. Furthermore, it can be assumed
that SCANa is memory-bound by itself. Since the prefetching of b in SCANb and the
loading and subsequent filtering of a occur concurrently, caching directly reduces the
memory bandwidth available to SCANa when both columns are located on the same
Node.

33

34 / 44 CHAPTER 6. EVALUATION

Configuration Raw Time

DDR-SDRAM (Baseline) 131.18 ms
HBM (Upper Limit) 93.09 ms

Table 6.1: Table showing raw timing for QdP on DDR-SDRAM and HBM. Result for
DDR-SDRAM serves as baseline while HBM presents the upper boundary
achievable with perfect prefetching.

6.3 Observations
In this section, we will present our findings from integrating the Cache developed in
Chapters 4 and 5 into QdP. We commence by presenting results obtained without
prefetching, which serve as a reference for evaluating the effectiveness of our Cache.
For all results presented, the amount of threads per pipeline and the amount of groups
influences performance [2], which however is out of scope for this work. Therefore, results
shown are for the best configurations measured.

6.3.1 Benchmarks without Prefetching

We benchmarked two methods to establish a baseline and an upper limit as reference
points. In the former, all columns are located in DDR-SDRAM. The latter method
simulates perfect prefetching without delay and overhead by placing column b in HBM
during benchmark initialization.

From Table 6.1, it is evident that accessing column b through HBM results in an
increase in processing speed. To gain a better understanding of how the increased
bandwidth of HBM accelerates the query, we will delve deeper into the time spent in the
different pipeline stages.

The following plots are normalized so that the longest execution from Figures 6.1 and
6.2 fills the half-circle. As waiting times at the barriers, which can vary by workload,
are not displayed here, the graphs do not fully represent the total execution time.
Additionally, the total runtime also encompasses some overhead that the per-pipeline
timings do not cover. Therefore, a discrepancy between the raw runtime values from the
Tables and Figures may be observed.

Due to the higher bandwidth provided by HBM for AGGREGATE, the CPU waits
less for data from main memory, thereby improving processing times. This is evident
in the overall shorter time taken for AGGREGATE in Figure 6.1b compared to the
baseline depicted in Figure 6.1a. Consequently, more threads can be assigned to SCANa,
with aggregate requiring less resources. This explains why the HBM-results not only show
faster processing times than DDR-SDRAM for AGGREGATE but also for SCANa.

6.3.2 Benchmarks using Prefetching

To address the challenges posed by sharing memory bandwidth between both SCAN -
operations, we will conduct the prefetching benchmarking in two configurations. Firstly,

6.3. OBSERVATIONS 35 / 44

51.74 ms - Aggregate
48.46 ms - Scan A

(a) Columns a and b located on the same
DDR-SDRAM Node.

22.39 ms - Aggregate
33.57 ms - Scan A

(b) Column a located in DDR-SDRAM and
b in HBM.

Figure 6.1: Time spent on functions SCANa and AGGREGATE without prefetching
for different locations of column b. Figure (a) represents the lower boundary
by using only DDR-SDRAM, while Figure (b) simulates perfect caching by
storing column b in HBM during benchmark setup.

Configuration Speedup Cache Hitrate Raw Time

DDR-SDRAM (Baseline) x1.00 — 131.18 ms
HBM (Upper Limit) x1.41 — 93.09 ms
Prefetching x0.82 89.38 % 159.72 ms
Prefetching, Distributed Columns x1.23 93.20 % 106.52 ms

Table 6.2: Table showing Speedup for different QdP Configurations over DDR-SDRAM.
Result for DDR-SDRAM serves as baseline while HBM presents the upper
boundary achievable with perfect prefetching. Prefetching was performed with
the same parameters and data locations as DDR-SDRAM, caching on Node
8 (HBM accessor for the executing Node 0). Prefetching with Distributed
Columns had columns a and b located on different Nodes.

both columns a and b will be situated on the same Node. We anticipate demonstrating
the memory bottleneck in this scenario, through increased execution time of SCANa.
Secondly, we will distribute the columns across two Nodes, both still utilizing DDR-
SDRAM. In this configuration, the memory bottleneck is alleviated, leading us to
anticipate better performance compared to the former setup.

We now examine Table 6.2, where a slowdown is shown for prefetching. This drop-off
below our baseline when utilizing the Cache may be surprising at first glance. However,
it becomes reasonable when we consider that in this scenario, the DSAs executing
the caching tasks compete for bandwidth with the SCANa pipeline threads, while
also adding additional overhead from the Cache and work submission. The second
measured configuration for QdP is shown as ‘Prefetching, Distributed Columns’ in
Table 6.2. For this method, distributing the columns across different Nodes results
in a noticeable performance increase compared to our baseline, although not reaching
the upper boundary set by simulating perfect prefetching (called ‘HBM (Upper Limit)’

36 / 44 CHAPTER 6. EVALUATION

49.88 ms - Aggregate
72.78 ms - Scan A
21.06 ms - Scan A and B (parallel)

(a) Prefetching with columns a and b loc-
ated on the same DDR-SDRAM Node.

35.61 ms - Aggregate
34.27 ms - Scan A
21.51 ms - Scan A and B (parallel)

(b) Prefetching with columns a and b loc-
ated on different DDR-SDRAM Nodes.

Figure 6.2: Time spent on functions SCANa, SCANb and AGGREGATE with prefetch-
ing. Operations SCANa and SCANb execute concurrently. Figure (a) shows
bandwidth limitation as time for SCANa increases drastically due to the
copying of column b to HBM taking place in parallel. For Figure (b), the
columns are located on different Nodes, thereby the SCAN -operations do
not compete for bandwidth.

in the same Table). This confirms our assumption that the SCANa pipeline itself is
bandwidth-bound, as without this contention, we observe an increase in cache hit rate
and decrease in processing time. We will now examine the performance in more detail
with per-pipeline timings.

In Figure 6.2a, the competition for bandwidth between SCANa and SCANb is evident,
with SCANa showing significantly longer execution times. SCANb is nearly unaffected, as
it only performs work submission through the Cache and therefore does not access system
memory directly. This prolonged duration of execution in SCANa leads to extended
overlaps between groups still processing the scan and those engaged in AGGREGATE.
Consequently, despite the relatively high cache hit rate (see Table 6.2), minimal speed-up
is observed for AGGREGATE compared to the baseline depicted in Figure 6.1a. The
extended runtime can be attributed to the prolonged duration of SCANa.

Regarding the benchmark depicted in Figure 6.2a, where we distributed columns a and
b across two nodes, the parallel execution of prefetching tasks on DSA does not directly
impede the bandwidth available to SCANa. However, there is a discernible overhead
associated with cache utilization, as evident in the time spent in SCANb. Consequently,
both SCANa and AGGREGATE operations experience slightly longer execution times
than the theoretical peak our upper-limit in Figure 6.1b exhibits.

6.4 Discussion
In Section 6.2, we anticipated that the simple query would pose a challenging case for
prefetching. This expectation proved to be accurate, highlighting that improper data
distribution can lead to adverse effects on performance when utilizing the Cache. Thus,
we consider the chosen scenario to be well-suited, as it showcases both performance

6.4. DISCUSSION 37 / 44

gains and losses, underscoring the importance of optimizing parameters and scenarios to
achieve positive outcomes.

The necessity to distribute data across Nodes is seen as practical, given that developers
commonly apply this optimization to leverage the available memory bandwidth of
Non-Uniform Memory Architectures. Consequently, the Cache has demonstrated its
effectiveness by achieving a respectable speed-up positioned directly between the baseline
and the theoretical upper limit (see Table 6.2).

As stated in Chapter 4, the decision to design and implement a cache instead of focusing
solely on prefetching was made to enhance the usefulness of this work’s contribution.
While our tests were conducted on a system with HBM, other advancements in main
memory technologies, such as NVRAM, were not considered. Despite the public functions
of the Cache being named with cache usage in mind, its utility extends beyond this scope,
providing flexibility through the policy functions, described in Section 4.1.1. Potential
applications include replication to NVRAM for data loss prevention. Therefore, we
consider the increase in design complexity to be a worthwhile trade-off, providing a
significant contribution to the field of heterogeneous memory systems.

7 Conclusion And Outlook

In this work, our aim was to analyse the architecture and performance of the Intel Data
Streaming Accelerator and integrate it into Query-driven Prefetching. We characterized
the hardware and software architecture of the DSA in Section 2.3 and provided an
overview of the available programming interface, Intel Data Mover Library, in Section
2.4. Our benchmarks were tailored to the planned application and included evaluations
such as copy performance from DDR-SDRAM to HBM (Section 3.2.3), the cost of
multithreaded work submission (Section 3.2.2), and an analysis of different submission
methods and sizes (Section 3.2.1). Notably, we observed an anomaly in inter-socket copy
speeds and found that the scaling of throughput was distinctly below linear (see Figure
3.7b). Although not all observations were explainable, the results provided important
insights into the behaviour of the DSA and its potential application in multi-socket
systems and HBM, complementing existing analyses [6].

Upon applying the cache developed in Chapters 4 and 5 to QdP, we encountered
challenges related to available memory bandwidth and the lack of feature support in
the API used to interact with the DSA. While the Cache represents a substantial
contribution to the field, its applicability is constrained to data that is infrequently
mutated. Although support exists for entry invalidation, it is rather rudimentary,
requiring manual invalidation and the developer to keep track of cached blocks and
ensure they are not overlapping (see Section 4.2). To address this, a custom container
data type could be developed to automatically trigger invalidation through the cache
upon modification and adding age tags to the data, which consumer threads can pass on.
This tagging can then be used to verify that work was completed with the most current
version.

In Section 6.3, we observed adverse effects when prefetching with the cache during
the parallel execution of memory-bound operations. This necessitated data distribution
across multiple NUMA-Nodes to circumvent bandwidth competition caused by parallel
caching operations. Despite this limitation, we do not consider it a major fault of the
Cache, as existing applications designed for Non-Uniform Memory Architecture (NUMA)
systems are likely already optimized in this regard.

As highlighted in Sections 2.4 and 5.2, the Application Programming Interface (API)
utilized to interact with the DSA currently lacks support for interrupt-based completion
waiting and the use of Dedicated Work Queue. Future development efforts may focus on
direct DSA access, bypassing the Intel Data Mover Library, to leverage the complete
feature set. Particularly, interrupt-based waiting would significantly enhance the usability
of the Cache, currently only supporting busy-waiting. This lead us to extend the design
by implement weak-waiting in Section 5.2, favouring cache misses instead of wasting
resources during the wait. Additionally, access through a Dedicated Work Queue has
the potential to reduce submission cost and thereby increase the caches’ effectiveness.

39

40 / 44 CHAPTER 7. CONCLUSION AND OUTLOOK

Although the preceding paragraphs and the results in Chapter 6 might suggest
that the Cache requires extensive refinement for production applications, we argue the
opposite. Under favourable conditions, as assumed for NUMA-aware applications, we
observed significant speed-up using the Cache for prefetching to High Bandwidth Memory,
accelerating database queries. Its utility is not limited to prefetching alone; it offers a
solution for replicating data to NVRAM and might prove applicable to different use cases.
Additional benchmarks on more complex queries for QdP and a comparison between
prefetching to HBM using knowledge of the coming queries and the data they access,
and ‘HBM Cache Mode’ (see Section 2.1) could yield deeper insights into the caches’
performance.

In conclusion, the Cache, together with the Sections on the DSA’s architecture (Section
2.3) and performance characteristics (Section 3.2), fulfil the stated goal of this work. We
have achieved performance gains through the DSA in QdP, thereby demonstrating its
potential to facilitate the exploitation of the properties offered by the various storage
tiers in heterogeneous memory systems.

Glossary

API
Application Programming Interface: Definition of the interface provided by
an application, enabling interaction between software components or systems.

DDR-SDRAM
Double Data Rate Synchronous Dynamic Random Access Memory: Main
memory technology found in common computer systems.

DSA
Intel Data Streaming Accelerator: A component of modern Intel server
processors, capable of executing common data operations asynchronously and
thereby offloading them from the CPU.

DWQ
Dedicated Work Queue: A type of Work Queue only usable by one process,
and therefore with potentially lower submission overhead. See Section 2.3.1.1 for
more detail.

HBM
High Bandwidth Memory: Main memory technology, consisting of stacked
DRAM-dies. Section 2.1 offers more detail.

Intel DML
Intel Data Mover Library: A library presenting a high-level interface with
the DSA. View the usage example in Section 2.4 or the library documentation [10]
for further information.

IOMMU
Input/Output Memory Management Unit: Hardware component responsible
for mapping memory addresses for peripheral devices performing Direct Memory
Access (DMA). May also provide memory protection mechanisms.

Memory Pressure
Memory Pressure: Situation where high memory utilization is encountered.

41

42 / 44 Glossary

Node
NUMA-Node: A Node in a NUMA-system. See the Entry for NUMA for an
explanation of both.

NUMA
Non-Uniform Memory Architecture: Describes a system architecture or-
ganized into different Nodes with each node observing different access patterns to
memory for the available address range.

NVRAM
Non-Volatile RAM: Main memory technology which, unlike DDR-SDRAM,
retains data when without power.

PASID
Process Address Space ID: Identifier used by the DSA in conjunction with the
IOMMU to resolve virtual addresses. See Section 2.3.1.2.

QdP
Query-driven Prefetching: Methodology to determine database columns
worth prefetching to cache in order to accelerate a queries. Described in Section
2.2.

SWQ
Shared Work Queue: A type of Work Queue to which submissions are implicitly
synchronized, allowing safe usage from multiple processes. See Section 2.3.1.1 for
more detail.

WQ
Work Queue: Architectural component of the DSA to which data is submitted
by the user. See Section 2.3.1.1 for more detail on its function.

Bibliography

[1] Intel, New Intel® Xeon® Platform Includes Built-In Accelerators for Encryption,
Compression, and Data Movement, https://www.intel.com/content/dam/www/
central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-
xeon-brief.pdf, Dec. 2022. (visited on 15th Nov. 2023).

[2] A. Berthold, A. Bartuschka, D. Habich, W. Lehner and H. Schirmeier, Towards
Query-Driven Prefetching to Optimize Data Pipelines in Heterogeneous Memory
Systems, unpublished, 2023.

[3] AMD, High-Bandwidth Memory (HBM), https://www.amd.com/system/files/
documents/high-bandwidth-memory-hbm.pdf. (visited on 14th Feb. 2024).

[4] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin and K. Kim, ‘HBM (High Band-
width Memory) DRAM Technology and Architecture’, in 2017 IEEE International
Memory Workshop (IMW), 2017, pp. 1–4. doi: 10.1109/IMW.2017.7939084.

[5] Intel, Intel® Xeon® CPU Max Series Product Brief, https://www.intel.com/
content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-
product-brief.html, 6th Jan. 2023. (visited on 18th Jan. 2024).

[6] R. Kuper, I. Jeong, Y. Yuan, J. Hu, R. Wang, N. Ranganathan and N. S. Kim, ‘A
Quantitative Analysis and Guideline of Data Streaming Accelerator in Intel® 4th
Gen Xeon® Scalable Processors’, May 2023. doi: 10.48550/arXiv.2305.02480.

[7] Intel, Intel® Data Streaming Accelerator User Guide, https://www.intel.com/
content / www / us / en / content - details / 759709 / intel - data - streaming -
accelerator-user-guide.html, 11th Jan. 2023. (visited on 15th Nov. 2023).

[8] Intel, Intel® Data Streaming Accelerator Architecture Specification, https://
www.intel.com/content/www/us/en/content-details/671116/intel-data-
streaming-accelerator-architecture-specification.html, 16th Sep. 2022.
(visited on 15th Nov. 2023).

[9] P. J. Denning, ‘Virtual Memory’, ACM Computing Surveys, vol. 28, no. 1, pp. 213–
216, Mar. 1996. doi: 10.1145/234313.234403.

[10] Intel, Intel Data Mover Library Documentation, https://intel.github.io/DML/
documentation/api_docs/high_level_api.html. (visited on 7th Jan. 2024).

[11] Intel, Intel IDXD User Space Application, https://github.com/intel/idxd-
config. (visited on 7th Jan. 2024).

[12] J. C. Sam Kuo, Implementing High Bandwidth Memory and Intel Xeon Processors
Max Series on Lenovo ThinkSystem Servers, https://lenovopress.lenovo.com/
lp1738.pdf, 26th Jun. 2023. (visited on 21st Jan. 2024).

43

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf
https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf
https://doi.org/10.1109/IMW.2017.7939084
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://doi.org/10.48550/arXiv.2305.02480
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://doi.org/10.1145/234313.234403
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://github.com/intel/idxd-config
https://github.com/intel/idxd-config
https://lenovopress.lenovo.com/lp1738.pdf
https://lenovopress.lenovo.com/lp1738.pdf

44 / 44 Bibliography

[13] A. Huang, Enabling Intel Data Streaming Accelerator on Lenovo ThinkSystem
Servers, https://lenovopress.lenovo.com/lp1582.pdf. (visited on 18th Apr.
2022).

[14] A. C. Fürst, Accompanying Thesis Repository, https://git.constantin-fuerst.
com/constantin/bachelor-thesis.

[15] Intel, Intel® Xeon® CPU Max Series Configuration and Tuning Guide, https:
//cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-
configuration-and-tuning-guide-rev3.pdf, Aug. 2023. (visited on 21st Jan.
2024).

[16] Intel, Intel® Xeon® CPU Max 9468 Processor, https://ark.intel.com/content/
www/us/en/ark/products/232596/intel-xeon-cpu-max-9468-processor-
105m-cache-2-10-ghz.html. (visited on 14th Feb. 2024).

[17] Kingston, DDR5 memory standard: An introduction to the next generation of DRAM
module technology, https://www.kingston.com/en/blog/pc-performance/
ddr5-overview, Jan. 2024. (visited on 4th Feb. 2024).

[18] A. Thune, S.-A. Reinemo, T. Skeie and X. Cai, ‘Detailed Modeling of Hetero-
geneous and Contention-Constrained Point-to-Point MPI Communication’, IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp. 1580–1593,
2023. doi: 10.1109/TPDS.2023.3253881.

[19] A. Berthold and A. Bartuschka, Throughput Benchmarks for CPU, personal
communication, 2023.

[20] cppreference.com, CPP Reference Entry on std::shared_ptr<T>, https://en.
cppreference.com/w/cpp/memory/shared_ptr. (visited on 17th Jan. 2024).

[21] T. Ku and N. Jung, ‘Implementation of Lock-Free shared_ptr and weak_ptr for
C++11 multi-thread programming’, in Journal of Korea Game Society, vol. 21,
28th Feb. 2021, pp. 55–65. doi: 10.7583/jkgs.2021.21.1.55..

[22] cppreference.com, CPP Reference Entry on std::atomic<T>::wait, https://en.
cppreference.com/w/cpp/atomic/atomic/wait. (visited on 18th Jan. 2024).

[23] cppreference.com, CPP Reference Entry on std::atomic<T>::notify_all, https:
//en.cppreference.com/w/cpp/atomic/atomic/notify_all. (visited on
18th Jan. 2024).

[24] T. Doumler, DWCAS in C++, https://timur.audio/dwcas-in-c, 31st Mar.
2022. (visited on 7th Feb. 2024).

https://lenovopress.lenovo.com/lp1582.pdf
https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
https://cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
https://cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
https://ark.intel.com/content/www/us/en/ark/products/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz.html
https://www.kingston.com/en/blog/pc-performance/ddr5-overview
https://www.kingston.com/en/blog/pc-performance/ddr5-overview
https://doi.org/10.1109/TPDS.2023.3253881
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://doi.org/10.7583/jkgs.2021.21.1.55.
https://en.cppreference.com/w/cpp/atomic/atomic/wait
https://en.cppreference.com/w/cpp/atomic/atomic/wait
https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
https://timur.audio/dwcas-in-c

	List of Figures
	List of Tables
	Introduction
	Technical Background
	High Bandwidth Memory
	Query-driven Prefetching
	Intel Data Streaming Accelerator
	Programming Interface for Intel Data Streaming Accelerator
	System Setup and Configuration

	Performance Microbenchmarks
	Benchmarking Methodology
	Benchmarks
	Analysis

	Design
	Interface
	Usage Restrictions

	Implementation
	Synchronization for Cache and CacheData
	Application to Query-driven Prefetching

	Evaluation
	Benchmarked Task
	Expectations
	Observations
	Discussion

	Conclusion And Outlook
	Glossary
	Bibliography

