
Bachelors Thesis

Data Movement in Heterogeneous
Memories with Intel Data Streaming

Accelerator

Anatol Constantin Fürst

23rd January 2024

Technische Universität Dresden
Faculty of Computer Science

Institute of Systems Architecture
Chair of Operating Systems

Academic Supervisors:
Prof. Dr.-Ing. Horst Schirmeier
Prof. Dr.-Ing. habil. Dirk Habich
M.Sc. André Berthold

Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

Aufgabenstellung für die Anfertigung einer Bachelor-Arbeit

Studiengang:
Studienrichtung:
Name:
Matrikelnummer:

Bachelor
Informatik (2009)
Constantin Fürst
4929314

Titel: Data Movement in Heterogeneous Memories with
Intel Data Streaming Accelerator

Developments in main memory technologies like Non-Volatile RAM (NVRAM), High Bandwidth
Memory (HBM), NUMA, or Remote Memory, lead to heterogeneous memory systems that,
instead of providing one monolithic main memory, deploy multiple memory devices with
different non-functional memory properties. To reach optimal performance on such systems, it
becomes increasingly important to move data, ahead of time, to the memory device with non-
functional properties tailored for the intended workload, making data movement operations
increasingly important for data intensive applications. Unfortunately, while copying, the CPU is
mostly busy with waiting for the main memory, and cannot work on other computations. To
tackle this problem Intel implements the Intel Data Streaming Accelerator (Intel DSA), an engine
to explicitly offload data movement operations from the CPU, in their newly released Intel Xeon
CPU Max processors.
The goal of this bachelor thesis is to analyze and characterize the architecture of the Intel

DSA and the vendor-provided APIs. The student should benchmark the performance of Intel
DSA and compare it to the CPU’s performance, concentrating on data transfers between DDR5-
DRAM and HBM and between different NUMA nodes. Additionally, the student should find
out in what way and to what extent parallel processes copying data interfere with each other.
Analyzing the performance information, the thesis should outline a gainful utilization of the
Intel DSA and demonstrate its potential by extending the Query-driven Prefetching concept,
which aims to speed up database query execution in heterogeneous memory systems.

Gutachter: Prof. Dr.-Ing. Dirk Habich
Betreuer: André Berthold, M.Sc.
Ausgehändigt am: 4. Dezember 2023
Einzureichen am: 19. Februar 2024

Prof. Dr.-Ing. Horst Schirmeier
Betreuender Hochschullehrer

Statement of Authorship
I hereby declare that I am the sole author of this master thesis and that I have not used
any sources other than those listed in the bibliography and identified as references. I
further declare that I have not submitted this thesis at any other institution in order to
obtain a degree.

Dresden, 23rd January 2024

Anatol Constantin Fürst

Abstract

…abstract … write the
abstract

Contents

List of Figures XI

1 Introduction 1

2 Technical Background 3
2.1 High Bandwidth Memory . 3
2.2 Query Driven Prefetching . 3
2.3 Intel Data Streaming Accelerator . 3
2.4 Programming Interface . 6
2.5 System Setup and Configuration . 8

3 Performance Microbenchmarks 9
3.1 Benchmarking Methodology . 9
3.2 Benchmarks . 10
3.3 Analysis . 14

4 Design 17
4.1 Detailed Task Description . 17
4.2 Cache Design . 17

5 Implementation 21
5.1 Locking and Usage of Atomics . 21
5.2 Accelerator Usage . 25

6 Evaluation 27

7 Conclusion And Outlook 29
7.1 Conclusions . 29
7.2 Future Work . 29

Glossary 31

Bibliography 33

IX

List of Figures

2.1 DSA Internal Architecture [5, Fig. 1 (a)]. Shows the components that the
chip is made up of, how they are connected and which outside components
the DSA communicates with. 4

2.2 DSA Software View [5, Fig. 1 (b)]. Illustrating the software stack and
internal interactions from user applications, through the driver to the
portal for work submission. 6

2.3 DML Memcpy Implementation Pseudocode. Performs copy operation of a
block of memory from source to destination. The DSA executing this copy
can be selected with the parameter node, and the template parameter
path elects whether to run on hardware (DSA) or software (CPU). . . . 7

3.1 Benchmark Procedure Pseudocode. Timing marked with yellow back-
ground. Showing data allocation and the benchmarking loop for a single
thread. 9

3.2 Throughput for different Submission Methods and Sizes. Performing a
copy with source and destination being node 0, executed by the DSA on
node 0. Observable is the submission cost which affects small transfer
sizes differently, as there the completion time is lower. 11

3.3 Throughput for different Thread Counts and Sizes. Multiple threads
submit to the same Shared Work Queue. Performing a copy with source
and destination being node 0, executed by the DSA on node 0. 12

3.4 Xeon Max NUMA-Node Layout [13, Fig. 14] for a 2-Socket System when
configured with HBM-Flat. Showing separate Node IDs for manual HBM
access and for Cores and DDR memory. 13

3.5 Throughput for brute force copy from DDR to HBM. Using all available
DSA. Copying 1 GiB from Node 0 to the Destination Node specified on
the x-axis. Shows peak achievable with DSA. 14

3.6 Throughput for smart copy from DDR to HBM. Using four on-socket
DSA for intra-socket operation and the DSA on source and destination
node for inter-socket. Copying 1 GiB from Node 0 to the Destination
Node specified on the x-axis. Shows conservative performance. 15

3.7 Throughput from DDR to HBM on CPU. Using 12 Threads spawned on
Node 0 for the task. Copying 1 GiB from Node 0 to the Destination Node
specified on the x-axis. 16

3.8 Throughput from DDR to HBM on CPU. Using the exact same code as
smart copy, therefore spawning one thread on Node 0, 1, 2 and 3. Copying
1 GiB from Node 0 to the Destination Node specified on the x-axis. This
shows the low performance of software path, when not adapting the code. 16

XI

XII / 34 List of Figures

4.1 Public Interface of CacheData and Cache Classes. Colour coding for
thread safety. Grey denotes impossibility for threaded access. Green
indicates full safety guarantees only relying on atomics to achieve this.
Yellow may use locking but is still safe for use. Red must be called from
a single threaded context. 18

5.1 Sequence for Blocking Scenario. Observable in first draft implementation.
Scenario where T1 performed first access to a datum followed T2 and
T3. Then T1 holds the handlers exclusively, leading to the other threads
having to wait for T1 to perform the work submission and waiting before
they can access the datum through the cache. 23

5.2 CacheData::WaitOnCompletion Pseudocode. Final rendition of the im-
plementation for a fair wait function. 24

1 Introduction
write this
chapter

1

2 Technical Background
write in-
troductory
paragraph2.1 High Bandwidth Memory

High Bandwidth Memory is a novel memory technology promising an increase in peak
bandwidth. It is composed of stacked DRAM dies [1, p. 1] and is slowly being integrated
into server processors, the Intel® Xeon® Max Series [2] being one recent example. High
Bandwidth Memory (HBM) on these systems may be configured in different memory
modes, most notably, HBM Flat Mode and HBM Cache Mode [2]. The former gives
applications direct control, requiring code changes while the latter utilizes the HBM as
cache for the systems DDR based main memory [2].

2.2 Query Driven Prefetching
write this
section

2.3 Intel Data Streaming Accelerator

Intel DSA is a high-performance data copy and transformation accelerator
that will be integrated in future Intel® processors, targeted for optimizing
streaming data movement and transformation operations common with ap-
plications for high-performance storage, networking, persistent memory, and
various data processing applications. [3, Ch. 1]

Introduced with the 4th generation of Intel Xeon Scalable Processors, the DSA promises
to alleviate the CPU from ‘common storage functions and operations such as data integrity
checks and deduplication’ [4, p. 4]. To utilize the hardware optimally, knowledge of its
workings is required. Therefore, we present an overview of the architecture, software, and
the interaction of these two components, going into detail on the workings of the DSA
engine itself. All statements are based on Chapter 3 of the Architecture Specification by
Intel.

2.3.1 Hardware Architecture

The DSA chip is directly integrated into the processor and attaches via the I/O fabric
interface over which all communication is conducted. Through this interface, it is
accessible as a PCIe device. Therefore, configuration utilizes memory-mapped registers
set in the devices Base Address Register (BAR). Through these, the devices’ layout is
defined and memory pages for work submission set. In a system with multiple processing

3

4 / 34 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: DSA Internal Architecture [5, Fig. 1 (a)]. Shows the components that the
chip is made up of, how they are connected and which outside components
the DSA communicates with.

nodes, there may also be one DSA per node, resulting in 4 being present on the previously
mentioned Xeon Max CPU.add cita-

tions to this
section

To satisfy different use cases, the layout of the DSA may be software-defined. The
structure is made up of three components, namely Work Queue (WQ), Engine and Group.
WQs provide the means to submit tasks to the device and will be described in more detail
shortly. They are marked yellow in Figure 2.1. An Engine is the processing-block that
connects to memory and performs the described task. The grey block of Figure 2.1 shows
the subcomponents that make up an engine and the different internal paths for a batch
or task descriptor . Using Groups, Engines and WQs are tied together, indicated bytoo much de-

tail for this
being the
first over-
view para-
graph

the dotted blue line around the components of Group 0 in Figure 2.1. This means, that
tasks from one WQ may be processed from multiple Engines and vice-versa, depending
on the configuration. This flexibility is achieved through the Group Arbiter, represented
by the orange block in Figure 2.1, which connects the two components according to the
user-defined configuration.

A WQ is accessible through so-called portals, light blue in Figure 2.1, which are
mapped memory regions. Submission of work is done by writing a descriptor to one of
these. A descriptor is 64 bytes in size and may contain one specific task (task descriptor)
or the location of a task array in memory (batch descriptor). Through these portals, the
submitted descriptor reaches a queue. There are two possible queue types with different
submission methods and use cases. The Shared Work Queue (SWQ) is intended to
provide synchronized access to multiple processes and each group may only have one
attached. A PCIe Deferrable Memory Write Request (DMR), which guarantees implicit
synchronization, is generated via x86 Instruction ENQCMD and communicates with
the device before writing [3, Sec. 3.3.1]. This may result in higher submission cost,

2.3. INTEL DATA STREAMING ACCELERATOR 5 / 34

compared to the Dedicated Work Queue (DWQ) to which a descriptor is submitted via
x86 Instruction MOVDIR64B [3, Sec. 3.3.2].

To handle the different descriptors, each Engine has two internal execution paths.
One for a task and the other for a batch descriptor. Processing a task descriptor is
straightforward, as all information required to complete the operation are contained
within . For a batch, the DSA reads the batch descriptor, then fetches all task descriptors cite this
from memory and processes them [3, Sec. 3.8]. An Engine can coordinate with the
operating system in case it encounters a page fault, waiting on its resolution, if configured
to do so, while otherwise, an error will be generated in this scenario [3, Sec. 2.2, Block
on Fault].

Ordering of operations is only guaranteed for a configuration with one WQ and one
Engine in a Group when submitting exclusively batch or task descriptors but no mixture.
Even then, only write-ordering is guaranteed, meaning that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’. A different issue arises, when an
operation fails, as the DSA will continue to process the following descriptors from the
queue. Care must therefore be taken with read-after-write scenarios, either by waiting
for a successful completion before submitting the dependant, inserting a drain descriptor
for tasks or setting the fence flag for a batch. The latter two methods tell the processing
engine that all writes must be committed and, in case of the fence in a batch, abort on
previous error. [3, Sec. 3.9]

An important aspect of modern computer systems is the separation of address spaces
through virtual memory. Therefore, the DSA must handle address translation, as a
process submitting a task will not know the physical location in memory which causes
the descriptor to contain virtual values. For this, the Engine communicates with the
Input/Output Memory Management Unit (IOMMU) and Address Translation Cache
(ATC) to perform this operation, as visible in the outward connections at the top of
Figure 2.1. For this, knowledge about the submitting processes is required, and therefore
each task descriptor has a field for the Process Address Space ID (PASID) which is filled
by the ENQCMD instruction for a SWQ [3, Sec. 3.3.1] or set statically after a process is
attached to a DWQ [3, Sec. 3.3.2].

The completion of a descriptor may be signalled through a completion record and
interrupt, if configured so. For this, the DSA ‘provides two types of interrupt message
storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2) a
device-specific Interrupt Message Storage (IMS) table’ [3, Sec. 3.7].

2.3.2 Software View

Since Linux Kernel 5.10, there exists a driver for the DSA which has no counterpart in
the Windows OS-Family [6, Sec. Installation], meaning that accessing the DSA is only
possible under Linux. To interface with the driver and perform configuration operations,
Intel’s accel-config [7] user space toolset may be used which provides a command-line
interface and can read configuration files to set up the device as described previously.
This can be seen in the upper block titled ‘User space’ in Figure 2.2. It interacts with the
kernel driver, light green and labled ‘IDXD’ in Figure 2.2, to achieve this. After successful

6 / 34 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: DSA Software View [5, Fig. 1 (b)]. Illustrating the software stack and
internal interactions from user applications, through the driver to the portal
for work submission.

configuration, each WQ is exposed as a character device by mmap of the associated portal
[5, Sec. 3.3].

Given the file permissions, it would now be possible for a process to submit work to
the DSA via either MOVDIR64B or ENQCMD instructions, providing the descriptors
by manually configuring them. This, however, is quite cumbersome, which is why Intel
Data Mover Library (Intel DML) exists.

With some limitations, like lacking support for DWQ submission, this library presents
an interface that takes care of creation and submission of descriptors, and error handling
and reporting. Thanks to the high-level-view the code may choose a different execution
path at runtime which allows the memory operations to either be executed in hardware
or software. The former on an accelerator or the latter using equivalent instructions
provided by the library. This makes code using this library automatically compatible
with systems that do not provide hardware support. [6, Sec. Introduction]

2.4 Programming Interface
As mentioned in Subsection 2.3.2, Intel DML provides a high level interface to interact
with the hardware accelerator, namely Intel DSA. We choose to use the C++ interface
and will now demonstrate its usage by example of a simple memcopy-implementation for
the DSA.

2.4. PROGRAMMING INTERFACE 7 / 34

Figure 2.3: DML Memcpy Implementation Pseudocode. Performs copy operation of a
block of memory from source to destination. The DSA executing this copy
can be selected with the parameter node, and the template parameter path
elects whether to run on hardware (DSA) or software (CPU).

In the function header of Figure 2.3 we notice two differences, when comparing with
standard memcpy. The first is the template parameter named path and the second
being the additional parameter int node which we will discuss later. With path the
executing device, which can be the CPU or DSA, is selected, giving the option between
dml::software (CPU), dml::hardware (DSA) and dml::automatic where the latter
dynamically selects the device at runtime, preferring DSA over CPU execution. [6, Sec.
Quick Start]

Choosing the engine which carries out the copy might be advantageous for performance,
as we can see in Subsection 3.2.3. With the engine directly tied to the CPU node, as
observed in Subsection 2.3.1, the CPU Node ID is equivalent to the ID of the DSA. As
the library has limited NUMA support and therefore only utilizes the DSA device on
the node which the current thread is assigned to, we must assign the currently running
thread to the node in which the desired DSA resides. This is the reason for adding the
parameter int node, which is used in the first step of Figure 2.3, where we manually set
the node assignment according to it, using numa_run_on_node(node) for which more
information may be obtained in the respective manpage of libnuma [8].

Intel DML operates on so-called data views which we must create from the given
pointers and size in order to provide locations to the library. This is done using
dml::make_view(uint8_t* ptr, size_t size) with which we create views for both
source and destination, labled src_view and dst_view in Figure 2.3. [6, Sec. High-level
C++ API, Make view]

We submit a single descriptor using the asynchronous operation from Intel DML in
Figure 2.3. This uses the function dml::submit<path>, which takes an operation type
and parameters specific to the selected type and returns a handler to the submitted

8 / 34 CHAPTER 2. TECHNICAL BACKGROUND

task which can later be queried for completion of the operation. Passing the source
and destination views, together with the operation dml::mem_copy, we again notice one
element sticking out of the call. This is the addition of .block_on_fault() which lets
the DSA handle a page fault by coordinating with the operating system. This only works
if the device is configured to accept this flag. [6, Sec. High-level C++ API, How to Use
the Library] [6, Sec. High-level C++ API, Page Fault handling]

After submission, we poll for the task completion with handler.get() and check
whether the operation completed successfully.

2.5 System Setup and Configuration
In this section we will give a brief step-by-step list of setup instructions to replicate the
configuration being used for benchmarks and testing purposes in the following chapters.
We found Intel’s guide on DSA usage useful but consulted articles for setup on Lenovo
ThinkSystem Servers for crucial information not present in the former. Instructions for
configuring the HBM access mode, as mentioned in Section 2.1, may vary from system
to system and can require extra steps not found in the list below.

1. Set ‘Memory Hierarchy’ to Flat [9, Sec. Configuring HBM, Configuring Flat Mode],
‘VT-d’ to Enabled in BIOS [10, Sec. 2.1] and, if available, ‘Limit CPU PA to 46
bits’ to Disabled in BIOS [11, p. 5]

2. Use a kernel with IDXD driver support, available from Linux 5.10 or later [6, Sec.
Installation] and append the following to the kernel boot parameters in grub config:
intel_iommu=on,sm_on [11, p. 5]

3. Evaluate correct detection of DSA devices using dmesg | grep idxd which should
list as many devices as NUMA nodes on the system [11, p. 5]

4. Install accel-config from repository [7] or system package manager and inspect
the detection of DSA devices through the driver using accel-config list -i [11,
p. 6]

5. Create DSA configuration file for which we provide an example under
benchmarks/configuration-files/8n1d1e1w.conf in the accompanying repos-
itory [12] that is used for most benchmarks available. Then apply the configuration
using accel-config load-config -c [filename] -e [10, Fig. 3-9]

6. Inspect the now configured DSA devices using accel-config list [11, p. 7],
output should match the desired configuration set in the file used

3 Performance Microbenchmarks

The performance of DSA has been evaluated in great detail by Reese Kuper et al. in [5].
Therefore, we will perform only a limited amount of benchmarks with the purpose of
verifying the figures from [5] and analysing best practices and restrictions for applying
DSA to Query-driven Prefetching (QdP).

3.1 Benchmarking Methodology

Figure 3.1: Benchmark Procedure Pseudocode. Timing marked with yellow background.
Showing data allocation and the benchmarking loop for a single thread.

9

10 / 34 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

Benchmarks were conducted on an Intel Xeon Max CPU, system configuration following
Section 2.5 with exclusive access to the system. As Intel DML does not have support
for DWQ, we ran benchmarks exclusively with access through SWQ. The application
written for the benchmarks can be obtained in source form under benchmarks in the
thesis repository [12]. With the full source code available we only briefly describe a
section of pseudocode, as seen in Figure 3.1, in the following paragraph.

The benchmark performs node setup as described in Section 2.4 and allocates source
and destination memory on the nodes passed in as parameters. To avoid page faults
affecting the results, the entire memory regions are written to before the timed part of the
benchmark starts. These timings are marked with yellow background in Figure 3.1. To
get accurate results, the benchmark is repeated multiple times. At the beginning of each
repetition, all threads running will synchronize by use of a barrier. The behaviour then
differs depending on the submission method selected which can be a single submission
or a batch of given size. This can be seen in Figure 3.1 at the switch statement for
‘mode’. Single submission follows the example given in Section 2.4, and we therefore
do not go into detail explaining it here. Batch submission works unlike the former. A
sequence with specified size is created which tasks are then added to. This sequence is
then submitted to the engine similar to the submission of a single descriptor. Further
steps then follow the example from Section 2.4 again.

3.2 Benchmarks
In this section we will describe three benchmarks. Each complete with setup information
and preview, followed by plots showing the results and detailed analysis. We formulate
expectations and contrast them with the observations from our measurements. Where
displayed, the slim grey bars represent the standard deviation across iterations.

3.2.1 Submission Method

With each submission, descriptors must be prepared and sent off to the underlying
hardware. This is expected to come with a cost, affecting throughput sizes and submission
methods differently. By submitting different sizes and comparing batching and single
submission, we will evaluate at which submission method performs best for each tested
data size. We expect single submission to perform worse consistently, with a pronounced
effect on smaller transfer sizes. This is assumed, as the overhead of a single submission
with the SWQ is incurred for every iteration, while the batch only sees this overhead
once for multiple copies.

In Figure 3.2 we conclude that with transfers of 1 MiB and upwards, the submission
method makes no noticeable difference. For smaller transfers the performance varies
greatly, with batch operations leading in throughput. This is aligned with the finding
that ‘SWQ observes lower throughput between 1-8 KB [transfer size]’ [5, p. 6 and 7] for
normal submission method.

Another limitation may be observed in this result, namely the inherent throughput
limit per DSA chip of close to 30 GiB/s. This is apparently caused by I/O fabric
limitations [5, p. 5]. We therefore conclude, that the use of multiple DSA is required to

3.2. BENCHMARKS 11 / 34

1 KiB 4 KiB 1 MiB
Size of Submitted Task

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 in

 G
iB

/s

Submission Type
Single Submit
Batch, Size 10
Batch, Size 50

Figure 3.2: Throughput for different Submission Methods and Sizes. Performing a copy
with source and destination being node 0, executed by the DSA on node 0.
Observable is the submission cost which affects small transfer sizes differently,
as there the completion time is lower.

fully utilize the available bandwidth of HBM which theoretically lies at 256 GB/s [1,
Table I].

3.2.2 Multithreaded Submission

As we might encounter access to one DSA from multiple threads through the Shared
Work Queue associated with it, determining the effect this type of access has is important.
We benchmark multithreaded submission for one, two and twelve threads. The number
twelve representing the core count of one node on the test system. Each configuration
gets the same 120 copy tasks split across the available threads, all submitting to one DSA.
We perform this with sizes of 1 MiB and 1 GiB to see, if the behaviour changes with
submission size. As for smaller sizes, the completion time may be faster than submission
time. Therefore, smaller task sizes may see different effects of threading due to the fact
that multiple threads can work to fill the queue and ensure there is never a stall due it
being empty. On the other hand, we might experience lower-than-peak throughput with
rising thread count, caused by the synchronization inherent with SWQ.

In Figure 3.3 we see that threading has no negative impact. The synchronization
therefore affects single threaded access in the same way it does for multiple. For the
smaller size of 1 MiB our assumption came true and performance actually increased with
threads which we attribute to queue usage. We did not find an explanation for the speed
difference between sizes, which goes against the rationale that higher transfer size would
lead to less impact of submission time and therefore higher throughput.

12 / 34 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

1 Thread 2 Threads 12 Threads
Thread Count

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 in

 G
iB

/s

Transfer Size
1 MiB
1 GiB

Figure 3.3: Throughput for different Thread Counts and Sizes. Multiple threads submit
to the same Shared Work Queue. Performing a copy with source and
destination being node 0, executed by the DSA on node 0.

3.2.3 Data Movement from DDR to HBM

Moving data from DDR to HBM is most relevant to the rest of this work, as it is the target
application. As we discovered in Section 3.2.1, one DSA has a peak bandwidth limit of
30 GiB/s. We write to HBM with its theoretical peak of 256 GB/s [1, Table I]. Our top
speed is therefore limited by the slower main memory. For each node, the test system is
configured with two DIMMs of DDR5-4800. We calculate the theoretical throughput
as follows: 2 DIMMs ∗ 4800 Megatransfers

Second and DIMM ∗ 64−bitwidth
8bits/byte = 76800 MT/s = 75 GiB/s. Wehow to

verify this
calculation
with a cita-
tion? is it
even correct
because we
see close to
100 GiB/s
throughput?

conclude that to achieve closer-to-peak speeds, a copy task has to be split across multiple
DSA.

Two methods of splitting will be evaluated. The first being a brute force approach,
utilizing all available for any transfer direction. The seconds’ behaviour depends on the
data source and destination locations. As our system has multiple sockets, communication
crossing the socket could experience a latency and bandwidth disadvantage . We argue

cite this

that for intra-socket transfers, use of the DSA from the second socket will have only
marginal effect. For transfers crossing the socket, every DSA chip will perform badly,
and we choose to only use the ones with the fastest possible access, namely the ones
on the destination and source node. This might result in lower performance but also
uses one fourth of the engines of the brute force approach for inter-socket and half for
intra-socket. This gives other threads the chance to utilize these now-free chips.

For this benchmark, we copy 1 Gibibyte of data from node 0 to the destination node,
using the previously described submission method. For each node utilized, we spawn one
thread pinned to it, in charge of submission. We display data for nodes 8, 11, 12 and 15.

3.2. BENCHMARKS 13 / 34

Figure 3.4: Xeon Max NUMA-Node Layout [13, Fig. 14] for a 2-Socket System when
configured with HBM-Flat. Showing separate Node IDs for manual HBM
access and for Cores and DDR memory.

To understand the selection, we refer to Figure 3.4 which shows the configured systems’
node ids and the storage technology they represent. Node 8 accesses the HBM on node 0
and is therefore the physically closest destination possible. Node 11 is located diagonally
on the chip and therefore the furthest intra-socket operation benchmarked. Node 12 and
15 lie diagonally on the second sockets CPU and should therefore be representative of
inter-socket transfer operations.

From the brute force approach in Figure 3.5, we observe peak speeds of 96 GiB/s when
copying across the socket from Node 0 to Node 15. This invalidates our assumption,
that peak bandwidth would be achieved in the intra-socket scenario and goes against find out why

maybe?the calculated peak throughput of the memory on our system . The results however,

calculation
wrong?
other
factors?

align with findings in [5, Fig. 10].
While using significantly more resources, the brute force copy shown in Figure 3.5

outperforms the smart approach from Figure 3.6. We observe an increase in transfer
speed by utilizing all available DSA of 2 GiB/s for copy to Node 8, 18 GiB/s for Node
11 and 12 and 30 GiB/s for Node 15. The smart approach could accommodate another
intra-socket copy on the second socket, we assume without seeing negative impact. From
this we conclude that the smart copy assignment is worth to use, as it provides better
scalability.

3.2.4 Data Movement using CPU

For evaluating CPU copy performance two approaches were selected. For Figure 3.8 we
used the smart copy procedure as in 3.2.3, just selecting the software path, with no other
changes to the test. In Figure 3.7 the test was adapted to spawn 12 threads on Node 0.

The benchmark resulting in Figure 3.7 fully utilizes node 0 of the test system through
spawning 12 threads. We attribute the low performance of the inter-socket copy operation
to overhead of the interconnect. The slight difference between node 12 and 15 may be
explained using Figure 3.4, where we observe that physically node 12 is closer to node 0
than node 15.

14 / 34 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

8 11 12 15
Destination Node

0

20

40

60

80

100

Th
ro

ug
hp

ut
 in

 G
iB

/s

Figure 3.5: Throughput for brute force copy from DDR to HBM. Using all available
DSA. Copying 1 GiB from Node 0 to the Destination Node specified on the
x-axis. Shows peak achievable with DSA.

Comparing the results in Figure 3.8 with the data from the adapted test displayed in
Figure 3.7 we conclude that the software path just serves compatibility. The throughput
is comparatively low, requiring code changes to increase performance. This leads us not
to recommend using it.

3.3 Analysis
In this section we summarize the conclusions drawn from the three benchmarks performed
in the sections above and outline a utilization guideline. We also compare CPU and
DSA for the task of copying data from DDR to HBM.

1. From 3.2.1 we conclude that small copies under 1 MiB in size require batching and
still do not reach peak performance. Datum size should therefore be at or above 1
MiB if possible.

2. Subsection 3.2.2 assures that access from multiple threads does not negatively
affect the performance when using Shared Work Queue for work submission.

3. In 3.2.3, we chose to use the presented smart copy methodology to split copy tasks
across multiple DSA chips to achieve low utilization with acceptable performance.

We again refer to Figures 3.5 and 3.7 which both represent the maximum throughput
achieved with utilization of either DSA for the former and CPU for the latter. Noticeably,
the DSA does not seem to suffer from the inter-socket overhead like the CPU. To the

3.3. ANALYSIS 15 / 34

8 11 12 15
Destination Node

0

20

40

60

80

100

Th
ro

ug
hp

ut
 in

 G
iB

/s

Figure 3.6: Throughput for smart copy from DDR to HBM. Using four on-socket DSA
for intra-socket operation and the DSA on source and destination node for
inter-socket. Copying 1 GiB from Node 0 to the Destination Node specified
on the x-axis. Shows conservative performance.

contrary, we do see the highest throughput when copying across sockets . In any case,explanation?
DSA outperforms the CPU for transfer sizes over 1 MiB, demonstrating its potential to
increase throughput while at the same time freeing CPU cycles.

16 / 34 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

8 11 12 15
Destination Node

0

20

40

60

80

100

Th
ro

ug
hp

ut
 in

 G
iB

/s

Figure 3.7: Throughput from DDR to HBM on CPU. Using 12 Threads spawned on
Node 0 for the task. Copying 1 GiB from Node 0 to the Destination Node
specified on the x-axis.

8 11 12 15
Destination Node

0

20

40

60

80

100

Th
ro

ug
hp

ut
 in

 G
iB

/s

Figure 3.8: Throughput from DDR to HBM on CPU. Using the exact same code as
smart copy, therefore spawning one thread on Node 0, 1, 2 and 3. Copying
1 GiB from Node 0 to the Destination Node specified on the x-axis. This
shows the low performance of software path, when not adapting the code.

4 Design
write in-
troductory
paragraph4.1 Detailed Task Description
write this
section• give slightly more detailed task Description

• perspective of ”what problems have to be solved”

• not ”what is querry driven prefetching”

4.2 Cache Design
The task of prefetching is somewhat aligned with that of a cache. As a cache is more
generic and allows use beyond Query Driven Prefetching, the choice was made to solve
the prefetching offload by implementing an offloading Cache. When referring to the
provided implementation, Cache will be used from now on. The interface with Cache
must provide three basic functions: requesting a memory block to be cached, accessing
a cached memory block and synchronizing cache with the source memory. The latter
operation comes in to play when the data that is cached may also be modified, requiring
the entry to be updated with the source or the other way around. Due to the many
possible setups and use cases, the user should also be responsible for choosing cache
placement and the copy method. As re-caching is resource intensive, data should remain
in the cache for as long as possible while being removed when memory pressure due to
restrictive memory size drives the Cache to flush unused entries.

4.2.1 Interface

To allow rapid integration and ease developer workload, a simple interface was chosen.
As this work primarily focuses on caching static data, the choice was made only
to provide cache invalidation and not synchronization. Given a memory address,
Cache::Invalidate will remove all entries for it. The other two operations are provided
in one single function, which we shall call Cache::Access henceforth, receiving a data
pointer and size it takes care of either submitting a caching operation if the pointer
received is not yet cached or returning the cache entry if it is. The cache placement
and assignment of the task to accelerators are controlled by the user. In addition to
the two basic operations outlined before, the user also is given the option to flush the
cache using Cache::Flush of unused elements manually or to clear it completely with
Cache::Clear. This interface is represented on the right block of Figure 4.1 labelled
‘Cache’.

17

18 / 34 CHAPTER 4. DESIGN

CacheData

CacheData(uint8_t* data, size_t size)

CacheData(const CacheData& other)

~CacheData()

void WaitOnCompletion()

uint8_t* GetDataLocation() const

Cache

Cache() = default

void Flush(int node = -1)

~Cache()

void Init(CachePolicy*, CopyPolicy*)

std::unique_ptr<CacheData>
Access(uint8_t* data, size_t size)

void Clear()

void Invalidate()

Figure 4.1: Public Interface of CacheData and Cache Classes. Colour coding for thread
safety. Grey denotes impossibility for threaded access. Green indicates full
safety guarantees only relying on atomics to achieve this. Yellow may use
locking but is still safe for use. Red must be called from a single threaded
context.

As caching is performed asynchronously, the user may wish to wait on the opera-
tion. This would be beneficial if there are other threads making progress in parallel
while the current thread waits on its data becoming available in the faster cache,
speeding up local computation. To achieve this, the Cache::Access will return an
instance of an object which from hereinafter will be referred to as CacheData. Through
CacheData::GetDataLocation a pointer to the cached data will be retrieved, while also
providing CacheData::WaitOnCompletion which must only return when the caching
operation has completed and during which the current thread is put to sleep, allowing
other threads to progress. Figure 4.1 also documents the public interface for CacheData
on the left block labelled as such.

4.2.2 Cache Entry Reuse

When multiple consumers wish to access the same memory block through the Cache, we
could either provide each with their own entry, or share one entry for all consumers. The
first option may cause high load on the accelerator due to multiple copy operations being
submitted and also increases the memory footprint of the system. The latter option
requires synchronization and more complex design. As the cache size is restrictive, the
latter was chosen. The already existing CacheData will be extended in scope to handle
this by allowing copies of it to be created which must synchronize with each other for
CacheData::WaitOnCompletion and CacheData::GetDataLocation. This is shown by
the green markings, signalling thread safety guarantees for access in Figure 4.1.

4.2. CACHE DESIGN 19 / 34

4.2.3 Cache Entry Lifetime

By allowing multiple references to the same entry, memory management becomes a
concern. Freeing the allocated block must only take place when all copies of a CacheData
instance are destroyed, therefore tying cache entry lifetime to the lifetime of the longest
living copy of the original instance. This makes access to the entry legal during the
lifetime of any CacheData instance, while also guaranteeing that Cache::Clear will not
have any unforeseen side effects, as deallocation only takes place when the last consumer
has CacheData go out of scope or manually deletes it.

4.2.4 Usage Restrictions

As cache invalidation applies mainly to non-static data which this work does not focus
on, two restrictions are placed on the invalidation operation. This permits drastically
simpler cache design, as a fully coherent cache would require developing a thread safe
coherence scheme which is outside our scope.

Firstly, overlapping areas in the cache will cause undefined behaviour during invalid-
ation of any one of them. Only the entries with the equivalent source pointer will be
invalidated, while other entries with differing source pointers which, due to their size,
still cover the now invalidated region, will not be invalidated. At this point, the cache
may and may continue to contain invalid elements.

Secondly, invalidation is to be performed manually, requiring the programmer to
remember which points of data are at any given point in time cached and invalidating
them upon modification. No ordering guarantees will be given for this situation, possibly
leading to threads still having a pointer to now-outdated entries and continuing their
progress with this.

Due to its reliance on libnuma for memory allocation and thread pinning, Cache will
only work on systems where this library is present, excluding, most notably, Windows
from the compatibility list.

4.2.5 Accelerator Usage

Compared with the challenges of ensuring correct entry lifetime and thread safety, the
application of DSA for the task of duplicating data is simple, thanks partly to Intel DML
[6]. Upon a call to Cache::Access and determining that the given memory pointer
is not present in cache, work will be submitted to the Accelerator. Before, however,
the desired location must be determined which the user-defined cache placement policy
function handles. With the desired placement obtained, the copy policy then determines,
which nodes should take part in the copy operation which is equivalent to selecting
the Accelerators following 2.3.1. This causes the work to be split upon the available
accelerators to which the work descriptors are submitted at this time. The handlers
that Intel DML [6] provides will then be moved to the CacheData instance to permit
the callee to wait upon caching completion. As the choice of cache placement and copy
policy is user-defined, one possibility will be discussed in 5.

5 Implementation
write in-
troductory
paragraph5.1 Locking and Usage of Atomics

The usage of locking and atomics proved to be the challenging. Their use is performance
critical and mistakes may lead to deadlock. Therefore, they also constitute the most
interesting part of the implementation which is why this chapter will focus extensively
on the details of the implementation in regard to these.

5.1.1 Cache State Lock

To keep track of the current cache state the Cache will hold a reference to each currently
existing CacheData instance. The reason for this is twofold: In 4.2 we decided to keep
elements in the cache until forced by memory pressure to remove them. Secondly in
4.2.2 we decided to reuse one cache entry for multiple consumers. The second part
requires access to the structure holding this reference to be thread safe when accessing
and extending the cache state in Cache::Access, Cache::Flush and Cache::Clear.
The latter two both require a unique lock, preventing other calls to Cache from making
progress while the operation is being processed. For Cache::Access the use of locking
depends upon the caches state. At first only a shared lock is acquired for checking whether
the given address already resides in cache, allowing other Cache::Access-operations to
also perform this check. If no entry for the region is present, a unique lock is required as
well when adding the newly created entry to cache.

A map was chosen to represent the current cache state with the key being the memory
address of the entry and as value the CacheData instance. As the caching policy is
controlled by the user, one datum may be requested for caching in multiple locations. To
accommodate this, one map is allocated for each available node of the system. This can
be exploited to reduce lock contention by separately locking each nodes state instead of
utilizing a global lock. This ensures that Cache::Access and the implicit Cache::Flush
it may cause can not hinder progress of caching operations on other nodes. Both
Cache::Clear and a complete Cache::Flush as callable by the user will now iteratively
perform their respective task per nodes state, also allowing other nodes to progress.

Even with this optimization, in scenarios where the Cache is frequently tasked with
flushing and re-caching by multiple threads from the same node lock contention will
negatively impact performance by delaying cache access. Due to passive waiting, this
impact might be less noticeable when other threads on the system are able to make
progress during the wait.

21

22 / 34 CHAPTER 5. IMPLEMENTATION

5.1.2 CacheData Atomicity

The choice made in 4.2.2 requires thread safe shared access to the same resource.
std::shared_ptr<T> provides a reference counted pointer, which is thread safe for the
required operations, making it a prime candidate for this task. An implementation using
it was explored but proved to offer its own set of challenges. As we wish to reduce time
spent in a locked region, the task is only added to the nodes cache state when locked.
Submission takes place outside, which is sensible, as this submitting one task should
not hinder accessing another. To achieve the safety for CacheData::WaitOnCompletion
outlined in 4.2.2 this would require the threads to coordinate which thread performs the
actual waiting, as we assume the handlers of Intel DML to be non-threadsafe. In order
to avoid queuing multiple of the same copies, the task must be added before submission.
This results in a CacheData instance with invalid cache pointer and no handlers to wait
for being available, requiring additional usage of synchronization primitives. With using
std::shared_ptr<T> also comes the uncertainty of relying on the implementation to
be performant. The standard does not specify whether a lock-free algorithm is to be
used and [14] suggests abysmal performance for some implementations, although the full
article is in Korean. No further research was found on this topic.

It was therefore decided to implement atomic reference counting for CacheData which
means providing a custom constructor and destructor wherein a shared (through a
standard pointer however) atomic integer is either incremented or decremented using
atomic fetch sub and add operations [15] to increase or deacrease the reference counter
and, in case of decrease in the destructor signals that the destructor is called for the last
reference, perform actual destruction. The invalid state of CacheData achievable is also
avoided. To achieve this, the waiting algorithm requires the handlers to be contained
in an atomic pointer and the pointer to the cache memory be atomic too. Through
this we may use the atomic wait operation which is guaranteed by the standard to
be more efficient than simply spinning on Compare-And-Swap [16]. Some standard
implementations achieve this by yielding after a short spin cycle [17].

Designing the wait to work from any thread was complicated. In the first implementa-
tion, a thread would check if the handlers are available and if not atomically wait [16]
on a value change from nullptr. As the handlers are only available after submission, a
situation could arise where only one copy of CacheData is capable of actually waiting on
them. Lets assume that three threads T1, T2 and T3 wish to access the same resource.
T1 now is the first to call CacheData::Access and therefore adds it to the cache state
and will perform the work submission. Before T1 may submit the work, it is interrupted
and T2 and T3 obtain access to the incomplete CacheData on which they wait, causing
them to see a nullptr for the handlers but invalid cache pointer, leading to atomic wait
on the cache pointer (marked blue lines in 5.1). Now T1 submits the work and sets the
handlers (marked red lines in 5.1), while T2 and T3 continue to wait. Now only T1 can
trigger the waiting and is therefore capable of keeping T2 and T3 from progressing. This
is undesirable as it can lead to deadlocking if by some reason T1 does not wait and at the
very least may lead to unnecessary delay for T2 and T3 if T1 does not wait immediately.

To solve this, a different and more complicated order of waiting operations is required.
When waiting, the threads now immediately check whether the cache pointer contains a

5.1. LOCKING AND USAGE OF ATOMICS 23 / 34

CacheData Thread 1

WaitOnCompletion

Thread 2 Thread 3

WaitOnCompletion

Add Handlers

WaitOnCompletion

atomic wait on
cache update

return

return

return T1

return T2

return

Figure 5.1: Sequence for Blocking Scenario. Observable in first draft implementation.
Scenario where T1 performed first access to a datum followed T2 and T3.
Then T1 holds the handlers exclusively, leading to the other threads having
to wait for T1 to perform the work submission and waiting before they can
access the datum through the cache.

valid value and return if it does, as nothing has to be waited for in this case. Let’s take
the same example as before to illustrate the second part of the waiting procedure. T2

and T3 now both arrive in this latter section as the cache was invalid at the point in
time when waiting was called for. They now atomically wait on the handlers pointer to
change, instead of doing it the other way around as before. Now when T1 supplies the
handlers, it also uses std::atomic<T>::notify_one [18] to wake at least one thread
waiting on value change of the handlers pointer, if there are any. Through this the
exclusion that was observable in the first implementation is already avoided. If nobody
is waiting, then the handlers will be set to a valid pointer and a thread may pass the
atomic wait instruction later on. Following this wait, the handlers pointer is atomically
exchanged [19] with nullptr, invalidating it. Now each thread again checks whether
it has received a valid local pointer to the handlers from the exchange, if it has then
the atomic operation guarantees that is now in sole possession of the pointer. The
owning thread is tasked with actually waiting. All other threads will now regress and
call CacheData::WaitOnCompletion again. The solo thread may proceed to wait on the
handlers and should update the cache pointer.

Some two additional cases must be considered for the latter implementation to be
safe. The wait operation first checks for a valid cache pointer and then waits on the
handlers becoming valid. After processing the handlers, they are deleted and the pointer
therefore invalidated. Should the cache pointer now be invalid as well, deadlocks would
ensue. Therefore, the thread which exchanged the handlers pointer for a valid local copy
must set the cache pointer to a valid value. Should one of the offloaded operations have
failed, using the cache pointer is out of question as the datum it references might be

24 / 34 CHAPTER 5. IMPLEMENTATION

Figure 5.2: CacheData::WaitOnCompletion Pseudocode. Final rendition of the imple-
mentation for a fair wait function.

invalid. The cache is set to the source address in this case. Secondly, after one thread
has exchanged the pointer locally, threads may collect waiting on the handlers to become
available. This can happen when the wait on the handlers takes sufficient amount of time
during which both handlers and cache pointer are invalid. After waiting, the responsible
thread must therefore signal all [20] threads waiting on the handler to continue.

Two types of deadlocks were encountered during testing and have been accounted for.
On one hand, it was found that the guarantee of std::atomic<T>::wait to only wake
up when the value has changed [16] is stronger than the promise of waking up all waiting
threads with std::atomic<T>::notify_all [20]. The value of the handler pointer may
therefore not be exchanged with nullptr which is the value we wait on. As the highest
envisioned address requires the lower 52-bits of current 64-bit wide systems [21, p. 120]
[22, p. 4-2] setting all bits of a 64-bit-value yields an invalid pointer which is used as
the second invalid state possible. The second type was encountered when after creating
a CacheData instance it was determined this exists in the cache already and dropped.
As destruction waits on completion in order to ensure that no further jobs require the
memory held, a deadlock would arise from the cache and handler pointers both being
null and no handlers ever being set due to the instance being deleted immediately. To
circumvent this, the constructor of CacheData was modified to point to source memory

5.2. ACCELERATOR USAGE 25 / 34

by default. Only after calling a separate initialization function will CacheData replace
this with nullptr, therefore readying the instance for multithreaded usage.

5.1.3 Performance Guideline

Atomic operations come with an added performance penalty. No recent studies were
found on this, although we assume that the findings of Hermann Schweizer et al. in
“Evaluating the Cost of Atomic Operations on Modern Architectures“ [23] still hold
true for today’s processor architectures. Due to the inherent cache synchronization
mechanisms in place [23, Subsection IV.A.3 Off-Die Access], they observed significant
access latency increase depending on whether the atomic variable was located on the local
core, on a different core on the same chip or on another socket [23, Fig. 4]. Reducing the
cost of atomic accesses would require a less generic implementation, reducing some of
the guarantees we give in 4.2. This would allow reducing the amount of atomics required
but is outside the scope of this work.

With the distributed locking described in 5.1.1, lock contention should not have a
significant impact, although this remains to be tested. In addition to that, passive waiting
at the contended section will benefit other threads and might allow overall progress
to continue, if the application utilizing the cache has a threading model supporting
this. These two factors lead us to classify lock contention as only a minor performance
problem.

5.2 Accelerator Usage
After 4.2.5 the implementation of Cache provided leaves it up to the user to choose a
caching and copy method policy which is accomplished through submitting function
pointers at initialization of the Cache. In 2.5 we configured our system to have separate
NUMA-Node (Node)s for accessing HBM which are assigned a Node-ID by adding eight
to the Nodes ID of the Node that physically contains the HBM. Therefore, given Node
3 accesses some datum, the most efficient placement for the copy would be on Node
3 + 8 == 11. As the Cache is intended for multithreaded usage, conserving accelerator
resources is important, so that concurrent cache requests complete quickly. To get high
per-copy performance while maintaining low usage, the smart-copy method is selected
as described in 3.2.3 for larger copies, while small copies will be handled exclusively by
the current node. This distinction is made due to the overhead of assigning the current
thread to the selected nodes, which is required as Intel DML assigns submissions only to
the DSA engine present on the node of the calling thread [6, Section ”NUMA support”].
No testing has taken place to evaluate this overhead and determine the most effective
threshold.

6 Evaluation

…evaluation … write this
chapter

27

7 Conclusion And Outlook
write in-
troductory
paragraph7.1 Conclusions
write this
section

7.2 Future Work
write this
section

• analyse whether prefetching yields better performance than hbm caching mode [2]

• evaluate impact of lock contention and atomics on performance

• provide optimized use case specific versions with less locking

• extend the cache implementation use cases where data is not static

29

Glossary

A

ATC
... desc ...

B

BAR
... desc ...

D

DMR
... desc ...

DSA
... desc ...

DWQ
... desc ...

E

ENQCMD
... desc ...

H

HBM
... desc ...

I

Intel DML
... desc ...

IOMMU
... desc ...

31

32 / 34 Glossary

M

MOVDIR64B
... desc ...

N

Node
... desc ...

P

PASID
... desc ...

Q

QdP
... desc ...

S

SWQ
... desc ...

W

WQ
... desc ...

Bibliography

[1] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin and K. Kim, ‘Hbm (high
bandwidth memory) dram technology and architecture’, in 2017 IEEE International
Memory Workshop (IMW), 2017, pp. 1–4. doi: 10.1109/IMW.2017.7939084.

[2] Intel. ‘Intel® Xeon® CPU Max Series Product Brief’. (6th Jan. 2023), [Online].
Available: https://www.intel.com/content/www/us/en/content-details/
765259/intel-xeon-cpu-max-series-product-brief.html (visited on 18th Jan.
2024).

[3] Intel. ‘Intel® Data Streaming Accelerator Architecture Specification’. (16th Sep.
2022), [Online]. Available: https : / / www . intel . com / content / www / us /
en / content - details / 671116 / intel - data - streaming - accelerator -
architecture-specification.html (visited on 15th Nov. 2023).

[4] Intel. ‘New Intel® Xeon® Platform Includes Built-In Accelerators for Encryption,
Compression, and Data Movement’. (Dec. 2022), [Online]. Available: https://www.
intel.com/content/dam/www/central-libraries/us/en/documents/2022-
12/storage-engines-4th-gen-xeon-brief.pdf (visited on 15th Nov. 2023).

[5] R. K. et al. ‘A Quantitative Analysis and Guideline of Data Streaming Accelerator
in Intel® 4th Gen Xeon® Scalable Processors’. (May 2023), [Online]. Available:
https://arxiv.org/pdf/2305.02480.pdf (visited on 7th Jan. 2024).

[6] Intel, Intel Data Mover Library Documentation, https://intel.github.io/DML/
documentation/api_docs/high_level_api.html. (visited on 7th Jan. 2024).

[7] Intel, Intel IDXD User Space Application, https://github.com/intel/idxd-
config. (visited on 7th Jan. 2024).

[8] Debian, Debian manpage 3 for libnuma-dev. [Online]. Available: https://manpages.
debian.org/bookworm/libnuma-dev/numa.3.en.html (visited on 21st Jan.
2024).

[9] J. C. Sam Kuo. ‘Implementing High Bandwidth Memory and Intel Xeon Processors
Max Series on Lenovo ThinkSystem Servers’. (26th Jun. 2023), [Online]. Available:
https://lenovopress.lenovo.com/lp1738.pdf (visited on 21st Jan. 2024).

[10] Intel. ‘Intel® Data Streaming Accelerator User Guide’. (11th Jan. 2023), [Online].
Available: https://www.intel.com/content/www/us/en/content-details/
759709/intel-data-streaming-accelerator-user-guide.html (visited on
15th Nov. 2023).

[11] A. Huang. ‘Enabling Intel Data Streaming Accelerator on Lenovo ThinkSystem
Servers’. (), [Online]. Available: https://lenovopress.lenovo.com/lp1582.pdf
(visited on 18th Apr. 2022).

33

https://doi.org/10.1109/IMW.2017.7939084
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://arxiv.org/pdf/2305.02480.pdf
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://github.com/intel/idxd-config
https://github.com/intel/idxd-config
https://manpages.debian.org/bookworm/libnuma-dev/numa.3.en.html
https://manpages.debian.org/bookworm/libnuma-dev/numa.3.en.html
https://lenovopress.lenovo.com/lp1738.pdf
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://lenovopress.lenovo.com/lp1582.pdf

34 / 34 Bibliography

[12] A. C. Fürst, Accompanying Thesis Repository. [Online]. Available: https://git.
constantin-fuerst.com/constantin/bachelor-thesis.

[13] Intel. ‘Intel® Xeon® CPU Max Series Configuration and Tuning Guide’. (Aug.
2023), [Online]. Available: https://cdrdv2-public.intel.com/787743/354227-
intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
(visited on 21st Jan. 2024).

[14] T. Ku and N. Jung, ‘Implementation of Lock-Free shared_ptr and weak_ptr for
C++11 multi-thread programming’, in Journal of Korea Game Society, vol. 21,
28th Feb. 2021, pp. 55–65. doi: 10.7583/jkgs.2021.21.1.55..

[15] Unknown. ‘CPP Reference List of Atomic Operations’. (), [Online]. Available:
https://en.cppreference.com/w/cpp/thread#Atomic_operations (visited on
18th Jan. 2024).

[16] Unknown. ‘CPP Reference Entry on std::atomic<T>::wait’. (), [Online]. Available:
https://en.cppreference.com/w/cpp/atomic/atomic/wait (visited on
18th Jan. 2024).

[17] T. Rodgers. ‘Implementing C++20 atomic waiting in libstdc++’. (6th Dec. 2022),
[Online]. Available: https://developers.redhat.com/articles/2022/12/
06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_
atomic_waiting_ (visited on 18th Jan. 2024).

[18] Unknown. ‘CPP Reference Entry on std::atomic<T>::notify_one’. (), [Online].
Available: https://en.cppreference.com/w/cpp/atomic/atomic/notify_one
(visited on 18th Jan. 2024).

[19] Unknown. ‘CPP Reference Entry on std::atomic<T>::exchange’. (), [Online]. Avail-
able: https://en.cppreference.com/w/cpp/atomic/atomic/exchange (visited
on 18th Jan. 2024).

[20] Unknown. ‘CPP Reference Entry on std::atomic<T>::notify_all’. (), [Online].
Available: https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
(visited on 18th Jan. 2024).

[21] AMD. ‘AMD64 Programmer’s Manual Volume 2: System Programming’. (Dec.
2016), [Online]. Available: https://support.amd.com/TechDocs/24593.pdf
(visited on 18th Jan. 2024).

[22] Intel. ‘Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1’. (Dec. 2016), [Online]. Available: https:
//support.amd.com/TechDocs/24593.pdf (visited on 18th Jan. 2024).

[23] H. Schweizer, M. Besta and T. Hoefler, ‘Evaluating the Cost of Atomic Operations
on Modern Architectures’, in 2015 International Conference on Parallel Architecture
and Compilation (PACT), 2015, pp. 445–456. doi: 10.1109/PACT.2015.24.

https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
https://cdrdv2-public.intel.com/787743/354227-intel-xeon-cpu-max-series-configuration-and-tuning-guide-rev3.pdf
https://doi.org/10.7583/jkgs.2021.21.1.55.
https://en.cppreference.com/w/cpp/thread#Atomic_operations
https://en.cppreference.com/w/cpp/atomic/atomic/wait
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://en.cppreference.com/w/cpp/atomic/atomic/notify_one
https://en.cppreference.com/w/cpp/atomic/atomic/exchange
https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
https://support.amd.com/TechDocs/24593.pdf
https://support.amd.com/TechDocs/24593.pdf
https://support.amd.com/TechDocs/24593.pdf
https://doi.org/10.1109/PACT.2015.24

	List of Figures
	Introduction
	Technical Background
	High Bandwidth Memory
	Query Driven Prefetching
	Intel Data Streaming Accelerator
	Programming Interface
	System Setup and Configuration

	Performance Microbenchmarks
	Benchmarking Methodology
	Benchmarks
	Analysis

	Design
	Detailed Task Description
	Cache Design

	Implementation
	Locking and Usage of Atomics
	Accelerator Usage

	Evaluation
	Conclusion And Outlook
	Conclusions
	Future Work

	Glossary
	Bibliography

