
Bachelorarbeit

Data Movement in Heterogeneous
Memories with Intel Data Streaming

Accelerator

Anatol Constantin Fürst

8th January 2024

Technische Universität Dresden
Fakultät Informatik

Institut für Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr.-Ing. Horst Schirmeier
Betreuender Mitarbeiter: M.Sc. André Berthold

Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

Aufgabenstellung für die Anfertigung einer Bachelor-Arbeit

Studiengang:
Studienrichtung:
Name:
Matrikelnummer:

Bachelor
Informatik (2009)
Constantin Fürst
4929314

Titel: Data Movement in Heterogeneous Memories with
Intel Data Streaming Accelerator

Developments in main memory technologies like Non-Volatile RAM (NVRAM), High Bandwidth
Memory (HBM), NUMA, or Remote Memory, lead to heterogeneous memory systems that,
instead of providing one monolithic main memory, deploy multiple memory devices with
different non-functional memory properties. To reach optimal performance on such systems, it
becomes increasingly important to move data, ahead of time, to the memory device with non-
functional properties tailored for the intended workload, making data movement operations
increasingly important for data intensive applications. Unfortunately, while copying, the CPU is
mostly busy with waiting for the main memory, and cannot work on other computations. To
tackle this problem Intel implements the Intel Data Streaming Accelerator (Intel DSA), an engine
to explicitly offload data movement operations from the CPU, in their newly released Intel Xeon
CPU Max processors.
The goal of this bachelor thesis is to analyze and characterize the architecture of the Intel

DSA and the vendor-provided APIs. The student should benchmark the performance of Intel
DSA and compare it to the CPU’s performance, concentrating on data transfers between DDR5-
DRAM and HBM and between different NUMA nodes. Additionally, the student should find
out in what way and to what extent parallel processes copying data interfere with each other.
Analyzing the performance information, the thesis should outline a gainful utilization of the
Intel DSA and demonstrate its potential by extending the Query-driven Prefetching concept,
which aims to speed up database query execution in heterogeneous memory systems.

Gutachter: Prof. Dr.-Ing. Dirk Habich
Betreuer: André Berthold, M.Sc.
Ausgehändigt am: 4. Dezember 2023
Einzureichen am: 19. Februar 2024

Prof. Dr.-Ing. Horst Schirmeier
Betreuender Hochschullehrer

Selbständigkeitserklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 8. Januar 2024

Anatol Constantin Fürst

Abstract

…abstract …

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1
1.1 Introduction to Querry driven Prefetching 1
1.2 Introduction to Intel Data Streaming Accelerator 1
1.3 Goal Definition . 1

2 Technical Background on Intel DSA 3
2.1 Architecture . 3
2.2 Setup and Configuration . 7
2.3 Programming Interface . 7
2.4 Microbenchmarks . 7

3 Design 9
3.1 Detailed Task Description . 9
3.2 Applicability of Accelerator . 9
3.3 Design Choices . 9

4 Implementation 11

5 Evaluation 13

6 Future Work 15

7 Conclusion And Outlook 17

Bibliography 21

IX

List of Figures

2.1 Intel Data Streaming Accelerator (DSA) Internal Archtiecture Block
Diagramm Taken from Figure 1a of [3] 4

2.2 DSA Software View Block Diagramm Taken from Figure 1a of [3] 6

XI

List of Tables

XIII

1 Introduction

1.1 Introduction to Querry driven Prefetching
•

1.2 Introduction to Intel Data Streaming Accelerator
•

1.3 Goal Definition
• use DSA to offload asynchronous prefetching tasks

• effect is lower cpu utilization for copy

• this allows to focus on actual pipeline execution

1

2 Technical Background on Intel DSA

Intel DSA is a high-performance data copy and transformation accelerator
that will be integrated in future Intel® processors, targeted for optimizing
streaming data movement and transformation operations common with ap-
plications for high-performance storage, networking, persistent memory, and
various data processing applications. [1, p. 15]

Introduced with the 4th generation of Intel Xeon Scalable Processors [2], the DSA
promises to alleviate the CPU from ‘common storage functions and operations such as
data integrity checks and deduplication’ [2]. This chapter will give an overview of the
architecture, software and the interaction of these two components. The reader will be
familiarized with the setup and equipped with the knowledge to configure the system for
a specific use case. consider

adding pro-
jected use
cases as in
the architec-
ture specific-
ation here

2.1 Architecture
To be able to optimally utilize the Hardware, knowledge of its workings is required to
make educated decisions. Therefore, this section describes both the workings of the DSA
engine itself and the view that is presented through software interfaces. All statements
are based on Chapter 3 of the Architecture Specification by Intel [1].

3

4 / 21 CHAPTER 2. TECHNICAL BACKGROUND ON INTEL DSA

2.1.1 Hardware Architecture

Figure 2.1:
DSA Internal Archtiecture Block Diagramm

Taken from Figure 1a of [3]

The accelerator is directly integrated into the Processor and attaches via the I/O fabric
interface over which all communication is conducted. Over this interface, it is accessible
as a PCIe device. Configuration therefore is done through memory-mapped registers set
in the devices Base Address Register (BAR). Through these, the devices layout is defined
and memory pages for work submission are set. In a system with multiple processing
nodes, there may also be one DSA per node.

To satisfy different use cases, as already mentioned, the layout of the DSA may be
software-defined. The structure is made up of three components, namely Work Queue
(WQ)s, Engines and Groups. WQs provide the means to submit tasks to the device and
will be described in more detail shortly. An Engine is the processing-block that connects
to memory and performs the described task. Using Groups, Engines and WQs are tied
together. This means, that tasks from one WQ may be processed from multiple Engines
and that vice-versa, depending on the configuration. This flexibility is achieved through
the Group Arbiter which connects the two components and acts according to the setup.

A WQ is accessible through so-called portals, which are mapped memory regions.
Submission of work is done by writing a descriptor to one of these portals. A descriptor
is 64 Byte in size and may contain one specific task (task descriptor) or the location of a
task array in memory (batch descriptor). Through these portals, the submitted descriptor
reaches a queue of which there are two types with different submission methods and
use cases. The Shared Work Queue (SWQ) is intended to provide synchronized access
to multiple processes and each group may only have one attached. A PCIe Deferrable
Memory Write Request (DMR), which guarantees implicit synchronization, is generated

2.1. ARCHITECTURE 5 / 21

via x86 Instruction ENQCMD and communicates with the device before writing. This
results in higher submission cost, compared to the Dedicated Work Queue (DWQ) to
which a descriptor is submitted via x86 Instruction MOVDIR64B. The DWQ is therefore
more performant but may require access control mechanisms and may only be accessed
by one process at a time.

To handle the different descriptors, each Engine has two internal execution paths.
One for a task and the other for a batch descriptor. Processing a task descriptor is
straightforward, as all information required to complete the operation are contained
within. For a batch, the DSA first reads the batch descriptor, then fetches all task
descriptors for the batch from memory and processes them. An Engine can also trigger
a page fault when trying to access an unloaded page and wait on its completion, if
configured to do so. Otherwise, an error will be generated in this scenario.

Ordering of operations is only guaranteed for a configuration with one WQ and one
Engine in a Group when submitting exclusively batch or task descriptors but no mixture.
Even then, only write-ordering is guaranteed, meaning that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’ [1, p. 30]. A different issue arises,
should an operation fail: the DSA will continue to process the following descriptors.
Care must therefore be taken with read-after-write scenarios, either by waiting for a
successfull completion before submitting the dependant, inserting a drain descriptor for
tasks or setting the fence flag for a batch. The latter two methods tell the processing
engine that all writes must be commited and, in case of the fence in a batch, abort on
previous error.

An important aspect of modern computer systems is the separation of address spaces
through virtual memory. The DSA must therefore handle address translation, as a
process submitting a task will not know the physical location in memory which causes
the descriptor to contain virtual values. For this, the Engine communicates with the
Input/Output Memory Management Unit (IOMMU) and Address Translation Cache
(ATC) to perform this operation. For this, knowledge about the submitting processes is
required, and therefore each task descriptor has a field for the Process Address Space ID
(PASID) which is filled by the ENQCMD instruction for a SWQ or set statically after a
process is attached to a DWQ.

The completion of a descriptor may be signaled through a completion record and
interrupt, if configured so. For this, the DSA ‘provides two types of interrupt message
storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2) a
device-specific Interrupt Message Storage (IMS) table’ [1, p. 27].

6 / 21 CHAPTER 2. TECHNICAL BACKGROUND ON INTEL DSA

2.1.2 Software View

Figure 2.2:
DSA Software View Block Diagramm

Taken from Figure 1a of [3]

Due to efforts by intel programmers, since Linux Kernel 5.10 [4, Installation Instructinos],
there exists a driver for the DSA [5] which has no counterpart in the Windows OS-Family
[4, Installation Instructinos], meaning code developed without an alternative path will
not work there. To interface with the driver and perform configuration operations,
intels libaccel-conf [6] user space toolset may be used which provides a command-line
interface and can read configuration files to set up the device as described previously.
After successful configuration, each WQ is exposed as a character device by mmap of the
associated portal [3, p. 3].

Given the file permissions, it would now be possible for a process to submit work to
the DSA via either MOVDIR64B or ENQCMD instructions, providing the descriptors
by manually configuring them. This, however, is quite cumbersome, which is why Intels
Data Mover Library [4] exists. With some limitations (like lacking support for DWQs)
this library presents a high-level interface that takes care of creation and submission of
descriptors, some error handling and reporting. Thanks to the high-level-view the code
may choose a different execution path at runtime which allows the memory operations to
either be executed in hardware (on a DSA) or in software (using equivalent instructions
provided by the library) which makes code based upon it automatically compatible with
systems that do not provide hardware or software support.

2.2. SETUP AND CONFIGURATION 7 / 21

• drain descriptor / drain command signals completion of preceding descriptors for
fencing in non-batch submissions, in batches the “fence flag’‘ can be used to ensure
ordering, failures before a fence will lead to the following descriptors being aborted
[1, p. 30], sfence or mfence should be executed before pushing drain descriptor [1,
p. 32]

• cache control flag in descriptor controls whether writes are directed to cache or to
memory [1, p. 31] effects on copy from DRAM > HBM unknown

2.2 Setup and Configuration
Give the reader the tools to replicate the setup. Also explain why the BIOS-configs are
required.

Setup Requirements:

• VT-d enabled

• limit CPUPA to 46 Bits disabled

• IOMMU enabled

• kernel with iommu and idxd driver support

• kernel option ”intel_iommu=on,sm_on”

2.3 Programming Interface
• choice is intel data mover library

• two concepts, state-based for c-api and operation-based c++

• just explain the basics (no code) and refer to dml documentation

2.4 Microbenchmarks
• submit cost analysis: best method and for a subset the point at which submit cost

< time savings

• effect of mt-submit, low because SWQ implicitly synchronized, bandwidth is shared

• copy strategy and performance analysis from ddr to HBM

3 Design

3.1 Detailed Task Description
• give slightly more detailed task Description

• perspective of ”what problems have to be solved”

• not ”what is querry driven prefetching”

3.2 Applicability of Accelerator
• back-reference to the Microbenchmarks and conclusion on possible gains

• explain chosen configuration and libraries for the situation

3.3 Design Choices
• explain the design choices made to solve the problems

• this should go into theoretical details - no code

9

4 Implementation

…implementation …

11

5 Evaluation

…evaluation …

13

6 Future Work

…future work …

15

7 Conclusion And Outlook

…conclusion …

17

Glossary

A

ATC
... desc ...

B

BAR
... desc ...

D

DSA
... desc ...

DWQ
... desc ...

E

Engine
... desc ...

ENQCMD
... desc ...

G

Group
... desc ...

I

IOMMU
... desc ...

M

19

20 / 21 Glossary

MOVDIR64B
... desc ...

P

PASID
... desc ...

PCIe Deferrable Memory Write Request
... desc ...

S

SWQ
... desc ...

W

WQ
... desc ...

Bibliography

[1] Intel. ‘Intel® Data Streaming Accelerator Architecture Specification’. (16th Sep.
2022), [Online]. Available: https : / / www . intel . com / content / www / us /
en / content - details / 671116 / intel - data - streaming - accelerator -
architecture-specification.html (visited on 15th Nov. 2023).

[2] ——, ‘New intel® xeon® platform includes built-in accelerators for encryption,
compression, and data movement’. (Dec. 2022), [Online]. Available: https://www.
intel.com/content/dam/www/central-libraries/us/en/documents/2022-
12/storage-engines-4th-gen-xeon-brief.pdf (visited on 15th Nov. 2023).

[3] R. K. et al. ‘A Quantitative Analysis and Guideline of Data Streaming Accelerator
in Intel® 4th Gen Xeon® Scalable Processors’. (May 2023), [Online]. Available:
https://arxiv.org/pdf/2305.02480.pdf (visited on 7th Jan. 2024).

[4] Intel, Intel Data Mover Library Documentation, https://intel.github.io/DML/
index.html. (visited on 7th Jan. 2024).

[5] ——, Intel IDXD Driver for Linux Kernel, https://github.com/intel/idxd-
driver. (visited on 7th Jan. 2024).

[6] ——, Intel IDXD User Space Application, https://github.com/intel/idxd-
driver. (visited on 7th Jan. 2024).

21

https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://arxiv.org/pdf/2305.02480.pdf
https://intel.github.io/DML/index.html
https://intel.github.io/DML/index.html
https://github.com/intel/idxd-driver
https://github.com/intel/idxd-driver
https://github.com/intel/idxd-driver
https://github.com/intel/idxd-driver

	List of Figures
	List of Tables
	Introduction
	Introduction to Querry driven Prefetching
	Introduction to Intel Data Streaming Accelerator
	Goal Definition

	Technical Background on Intel DSA
	Architecture
	Setup and Configuration
	Programming Interface
	Microbenchmarks

	Design
	Detailed Task Description
	Applicability of Accelerator
	Design Choices

	Implementation
	Evaluation
	Future Work
	Conclusion And Outlook
	Bibliography

