import os import json import pandas as pd from itertools import chain from pandas.core.ops import methods from typing import List import seaborn as sns import matplotlib.pyplot as plt runid = "Run ID" x_label = "Destination Node" y_label = "Source Node" v_label = "Throughput" title = "Copy Throughput for 1GiB Elements running on SRC Node" index = [ runid, x_label, y_label] data = [] def calc_throughput(size_bytes,time_ns): time_seconds = time_ns * 1e-9 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs def index_from_element(value,array): for (idx,val) in enumerate(array): if val == value: return idx return 0 def load_time_mesurements(file_path): with open(file_path, 'r') as file: data = json.load(file) count = data["count"] batch_size = 8 iterations = data["list"][0]["task"]["iterations"] return { "total": sum([x / (iterations * batch_size * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]), "combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], "submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], "completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] } def process_file_to_dataset(file_path, src_node, dst_node): data_size = 1024*1024*1024 try: time = [load_time_mesurements(file_path)["total"]] run_idx = 0 for t in time: data.append({ runid : run_idx, x_label : dst_node, y_label : src_node, v_label: calc_throughput(data_size, t)}) run_idx = run_idx + 1 except FileNotFoundError: return def main(): folder_path = "benchmark-results/" for src_node in range(16): for dst_node in range(16): file = os.path .join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-4e.json") process_file_to_dataset(file, src_node, dst_node) df = pd.DataFrame(data) df.set_index(index, inplace=True) data_pivot = df.pivot_table(index=y_label, columns=x_label, values=v_label) sns.heatmap(data_pivot, annot=True, cmap="YlGn", fmt=".0f") plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-peakthroughput.png"), bbox_inches='tight') plt.show() if __name__ == "__main__": main()