
Bachelors Thesis

Data Movement in Heterogeneous
Memories with Intel Data Streaming

Accelerator

Anatol Constantin Fürst

21st January 2024

Technische Universität Dresden
Faculty of Computer Science

Institute of Systems Architecture
Chair of Operating Systems

Academic Supervisors:
Prof. Dr.-Ing. Horst Schirmeier
Prof. Dr.-Ing. habil. Dirk Habich
M.Sc. André Berthold

Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

Aufgabenstellung für die Anfertigung einer Bachelor-Arbeit

Studiengang:
Studienrichtung:
Name:
Matrikelnummer:

Bachelor
Informatik (2009)
Constantin Fürst
4929314

Titel: Data Movement in Heterogeneous Memories with
Intel Data Streaming Accelerator

Developments in main memory technologies like Non-Volatile RAM (NVRAM), High Bandwidth
Memory (HBM), NUMA, or Remote Memory, lead to heterogeneous memory systems that,
instead of providing one monolithic main memory, deploy multiple memory devices with
different non-functional memory properties. To reach optimal performance on such systems, it
becomes increasingly important to move data, ahead of time, to the memory device with non-
functional properties tailored for the intended workload, making data movement operations
increasingly important for data intensive applications. Unfortunately, while copying, the CPU is
mostly busy with waiting for the main memory, and cannot work on other computations. To
tackle this problem Intel implements the Intel Data Streaming Accelerator (Intel DSA), an engine
to explicitly offload data movement operations from the CPU, in their newly released Intel Xeon
CPU Max processors.
The goal of this bachelor thesis is to analyze and characterize the architecture of the Intel

DSA and the vendor-provided APIs. The student should benchmark the performance of Intel
DSA and compare it to the CPU’s performance, concentrating on data transfers between DDR5-
DRAM and HBM and between different NUMA nodes. Additionally, the student should find
out in what way and to what extent parallel processes copying data interfere with each other.
Analyzing the performance information, the thesis should outline a gainful utilization of the
Intel DSA and demonstrate its potential by extending the Query-driven Prefetching concept,
which aims to speed up database query execution in heterogeneous memory systems.

Gutachter: Prof. Dr.-Ing. Dirk Habich
Betreuer: André Berthold, M.Sc.
Ausgehändigt am: 4. Dezember 2023
Einzureichen am: 19. Februar 2024

Prof. Dr.-Ing. Horst Schirmeier
Betreuender Hochschullehrer

Statement of Authorship
I hereby declare that I am the sole author of this master thesis and that I have not used
any sources other than those listed in the bibliography and identified as references. I
further declare that I have not submitted this thesis at any other institution in order to
obtain a degree.

Dresden, 21st January 2024

Anatol Constantin Fürst

Abstract

…abstract … write the
abstract

Contents

List of Figures XI

1 Introduction 1

2 Technical Background 3
2.1 High Bandwidth Memory . 3
2.2 Query Driven Prefetching . 3
2.3 Intel Data Streaming Accelerator . 3
2.4 Programming Interface . 6
2.5 System Setup and Configuration . 8

3 Performance Microbenchmarks 9
3.1 Benchmarking Methodology . 9
3.2 Submission Method . 10
3.3 Multithreaded Submission . 11
3.4 Data Movement from DDR to HBM . 11
3.5 Analysis . 11

4 Design 13
4.1 Detailed Task Description . 13
4.2 Cache Design . 13

5 Implementation 17
5.1 Locking and Usage of Atomics . 17
5.2 Accelerator Usage . 22

6 Evaluation 23

7 Conclusion And Outlook 25
7.1 Conclusions . 25
7.2 Future Work . 25

Glossary 27

Bibliography 29

IX

List of Figures

2.1 DSA Internal Architecture [5, Fig. 1 (a)] 4
2.2 DSA Software View [5, Fig. 1 (b)] . 6
2.3 DML Memcpy Implementation . 7

3.1 Benchmark Procedure Pseudocode . 9
3.2 Throughput for different Submission Methods and Sizes 10

4.1 Public Interface of CacheData and Cache Classes 14

5.1 Sequence diagram for threading scenario in CacheData::WaitOnCompletion 19
5.2 Code Flow Diagram for CacheData::WaitOnCompletion 20

XI

1 Introduction
write this
chapter

1

2 Technical Background
write in-
troductory
paragraph2.1 High Bandwidth Memory

High Bandwidth Memory is a novel memory technology promising an increase in peak
bandwidth. It is composed of stacked DRAM dies [1, p. 1] and is slowly being integrated
into server processors, notably the Intel® Xeon® Max Series [2]. High Bandwidth
Memory (HBM) on these systems may be configured in different memory modes, most
notably, HBM Flat Mode and HBM Cache Mode [2]. The former gives applications
direct control, requiring code changes while the latter utilizes the HBM as cache for the
systems DDR based main memory [2].

2.2 Query Driven Prefetching
write this
section

2.3 Intel Data Streaming Accelerator

Intel DSA is a high-performance data copy and transformation accelerator
that will be integrated in future Intel® processors, targeted for optimizing
streaming data movement and transformation operations common with ap-
plications for high-performance storage, networking, persistent memory, and
various data processing applications. [3, Ch. 1]

Introduced with the 4th generation of Intel Xeon Scalable Processors, the DSA promises
to alleviate the CPU from ‘common storage functions and operations such as data integrity
checks and deduplication’ [4, p. 4]. To utilize the hardware optimally, knowledge of its
workings is required. Therefore, we present an overview of the architecture, software, and
the interaction of these two components, going into detail on the workings of the DSA
engine itself. All statements are based on Chapter 3 of the Architecture Specification by
Intel.

2.3.1 Hardware Architecture

The DSA chip is directly integrated into the processor and attaches via the I/O fabric
interface over which all communication is conducted. Through this interface, it is
accessible as a PCIe device. Therefore, configuration utilizes memory-mapped registers
set in the devices Base Address Register (BAR). Through these, the devices’ layout is
defined and memory pages for work submission set. In a system with multiple processing

3

4 / 30 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: DSA Internal Architecture [5, Fig. 1 (a)]

nodes, there may also be one DSA per node, resulting in 4 being present on the previously
mentioned Xeon Max CPU.

To satisfy different use cases, the layout of the DSA may be software-defined. The
structure is made up of three components, namely Work Queue (WQ), Engine and Group.
WQs provide the means to submit tasks to the device and will be described in more
detail shortly. They are marked yellow in Figure 2.1. An Engine is the processing-block
that connects to memory and performs the described task. The grey block of Figure 2.1
shows the subcomponents that make up an engine and the different internal paths for a
batch or task descriptor. Using Groups, Engines and WQs are tied together, indicated by
the dotted blue line around the components of Group 0 in Figure 2.1. This means, that
tasks from one WQ may be processed from multiple Engines and vice-versa, depending
on the configuration. This flexibility is achieved through the Group Arbiter, represented
by the orange block in Figure 2.1, which connects the two components according to the
user-defined configuration.

A WQ is accessible through so-called portals, light blue in Figure 2.1, which are
mapped memory regions. Submission of work is done by writing a descriptor to one of
these. A descriptor is 64 bytes in size and may contain one specific task (task descriptor)
or the location of a task array in memory (batch descriptor). Through these portals, the
submitted descriptor reaches a queue. There are two possible queue types with different
submission methods and use cases. The Shared Work Queue (SWQ) is intended to
provide synchronized access to multiple processes and each group may only have one
attached. A PCIe Deferrable Memory Write Request (DMR), which guarantees implicit
synchronization, is generated via x86 Instruction ENQCMD and communicates with
the device before writing [3, Sec. 3.3.1]. This may result in higher submission cost,
compared to the Dedicated Work Queue (DWQ) to which a descriptor is submitted via
x86 Instruction MOVDIR64B [3, Sec. 3.3.2].

2.3. INTEL DATA STREAMING ACCELERATOR 5 / 30

To handle the different descriptors, each Engine has two internal execution paths.
One for a task and the other for a batch descriptor. Processing a task descriptor is
straightforward, as all information required to complete the operation are contained
within. For a batch, the DSA reads the batch descriptor, then fetches all task descriptors
for the batch from memory and processes them [3, Sec. 3.8]. An Engine can coordinate
with the operating system in case it encounters a page fault, waiting on its resolution, if
configured to do so, while otherwise, an error will be generated in this scenario [3, Sec.
2.2, Block on Fault].

Ordering of operations is only guaranteed for a configuration with one WQ and one
Engine in a Group when submitting exclusively batch or task descriptors but no mixture.
Even then, only write-ordering is guaranteed, meaning that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’. A different issue arises, when an
operation fails, as the DSA will continue to process the following descriptors from the
queue. Care must therefore be taken with read-after-write scenarios, either by waiting
for a successful completion before submitting the dependant, inserting a drain descriptor
for tasks or setting the fence flag for a batch. The latter two methods tell the processing
engine that all writes must be committed and, in case of the fence in a batch, abort on
previous error. [3, Sec. 3.9]

An important aspect of modern computer systems is the separation of address spaces
through virtual memory. Therefore, the DSA must handle address translation, as a
process submitting a task will not know the physical location in memory which causes
the descriptor to contain virtual values. For this, the Engine communicates with the
Input/Output Memory Management Unit (IOMMU) and Address Translation Cache
(ATC) to perform this operation, as visible in the outward connections at the top of
Figure 2.1. For this, knowledge about the submitting processes is required, and therefore
each task descriptor has a field for the Process Address Space ID (PASID) which is filled
by the ENQCMD instruction for a SWQ [3, Sec. 3.3.1] or set statically after a process is
attached to a DWQ [3, Sec. 3.3.2].

The completion of a descriptor may be signalled through a completion record and
interrupt, if configured so. For this, the DSA ‘provides two types of interrupt message
storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2) a
device-specific Interrupt Message Storage (IMS) table’ [3, Sec. 3.7].

2.3.2 Software View

Since Linux Kernel 5.10, there exists a driver for the DSA which has no counterpart
in the Windows OS-Family [6, Sec. Installation], meaning that accessing the DSA
is not possible to user space applications. To interface with the driver and perform
configuration operations, Intel’s accel-config [7] user space toolset may be used which
provides a command-line interface and can read configuration files to set up the device
as described previously, this can be seen in the upper block titled ‘User space’ in Figure
2.2. It interacts with the kernel driver, light green and labled ‘IDXD’ in Figure 2.2, to
achieve this. After successful configuration, each WQ is exposed as a character device
by mmap of the associated portal [5, Sec. 3.3].

6 / 30 CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.2: DSA Software View [5, Fig. 1 (b)]

Given the file permissions, it would now be possible for a process to submit work to
the DSA via either MOVDIR64B or ENQCMD instructions, providing the descriptors
by manually configuring them. This, however, is quite cumbersome, which is why Intel
Data Mover Library (Intel DML) exists.

With some limitations, like lacking support for DWQ submission, this library presents
a high-level interface that takes care of creation and submission of descriptors, some error
handling and reporting. Thanks to the high-level-view the code may choose a different
execution path at runtime which allows the memory operations to either be executed
in hardware or software. The former on an accelerator or the latter using equivalent
instructions provided by the library. This makes code based upon it automatically
compatible with systems that do not provide hardware support. [6, Sec. Introduction]

2.4 Programming Interface
As mentioned in Subsection 2.3.2, Intel DML provides a high level interface to interact
with the hardware accelerator, namely Intel DSA. We choose to use the C++ interface
and will now demonstrate its usage by example of a simple memcopy-implementation for
the DSA.

In the function header of Figure 2.3 we notice two differences, when comparing with
standard memcpy. The first is the template parameter named path and the second
being the additional parameter int node which we will discuss later. With path the
executing device, which can be the CPU or DSA, is selected, giving the option between
dml::software (CPU), dml::hardware (DSA) and dml::automatic where the latter

2.4. PROGRAMMING INTERFACE 7 / 30

Figure 2.3: DML Memcpy Implementation

dynamically selects the device at runtime, preferring DSA over CPU execution. [6, Sec.
Quick Start]

Choosing the engine which carries out the copy might be advantageous for performance,
as we can see in Subsection 3.4. With the engine directly tied to the CPU node, as
observed in Subsection 2.3.1, the CPU Node ID is equivalent to the ID of the DSA. As
the library has limited NUMA support and therefore only utilizes the DSA device on
the node which the current thread is assigned to, we must assign the currently running
thread to the node in which the desired DSA resides. This is the reason for adding the
parameter int node, which is used in the first step of Figure 2.3, where we manually set
the node assignment according to it, using numa_run_on_node(node) for which more
information may be obtained in the respective manpage of libnuma [8].

Intel DML operates on so-called data views which we must create from the given
pointers and size in order to indicate data locations to the library. This is done using
dml::make_view(uint8_t* ptr, size_t size) with which we create views for both
source and destination, labled src_view and dst_view in Figure 2.3. [6, Sec. High-level
C++ API, Make view]

For submission, we chose to use the asynchronous style of a single descriptor in Figure
2.3. This uses the function dml::submit<path>, which takes an operation and operation
specific parameters in and returns a handler to the submitted task which can later
be queried for completion of the operation. Passing the source and destination views,
together with the operation dml::mem_copy, we again notice one thing sticking out of the
call. This is the addition to the operation specifier .block_on_fault() which submits
the operation, so that it will handle a page fault by coordinating with the operating
system. This only works if the device is configured to accept this flag. [6, Sec. High-level
C++ API, How to Use the Library] [6, Sec. High-level C++ API, Page Fault handling]

After submission, we poll for the task completion with handler.get() in Figure 2.3
and check whether the operation completed successfully.

8 / 30 CHAPTER 2. TECHNICAL BACKGROUND

2.5 System Setup and Configuration
In this section we will give a brief step-by-step list of setup instructions to replicate the
configuration being used for benchmarks and testing purposes in the following chapters.
We found Intel’s guide on DSA usage useful but consulted articles for setup on Lenovo
ThinkSystem Servers for crucial information not present in the former. Instructions for
configuring the HBM access mode, as mentioned in Section 2.1, may vary from system
to system and can require extra steps not found in the list below.

1. Set ‘Memory Hierarchy’ to Flat [9, Sec. Configuring HBM, Configuring Flat Mode],
‘VT-d’ to Enabled in BIOS [10, Sec. 2.1] and, if available, ‘Limit CPU PA to 46
bits’ to Disabled in BIOS [11, p. 5]

2. Use a kernel with IDXD driver support, available from Linux 5.10 or later [6, Sec.
Installation] and append the following to the kernel boot parameters in grub config:
intel_iommu=on,sm_on [11, p. 5]

3. Evaluate correct detection of DSA devices using dmesg | grep idxd which should
list as many devices as NUMA nodes on the system [11, p. 5]

4. Install accel-config from repository [7] or system package manager and inspect
the detection of DSA devices through the driver using accel-config list -i [11,
p. 6]

5. Create DSA configuration file for which we provide an example under
benchmarks/configuration-files/8n1d1e1w.conf in the accompanying repos-
itory [12] that is used for most benchmarks available. Then apply the configuration
using accel-config load-config -c [filename] -e [10, Fig. 3-9]

6. Inspect the now configured DSA devices using accel-config list [11, p. 7],
output should match the desired configuration set in the file used

3 Performance Microbenchmarks
write in-
troductory
paragraph

mention article by reese cooper here

3.1 Benchmarking Methodology

Figure 3.1: Benchmark Procedure Pseudocode

9

10 / 30 CHAPTER 3. PERFORMANCE MICROBENCHMARKS

Benchmarks were conducted on an Intel Xeon Max CPU, system configuration following
Section 2.5 with exclusive access to the system. As Intel’s Intel DML does not have
support for DWQ, we ran benchmarks exclusively with access through SWQ. The
application written for the benchmarks can be obtained in source form under benchmarks
in the thesis repository [12]. With the full source code available we only briefly describe
a section of pseudocode, as seen in Figure 3.1, in the following paragraph.

The benchmark performs node setup as described in Section 2.4 and allocates source
and destination memory on the nodes passed in as parameters. To avoid page faults
affecting the results, the entire memory regions are written to.

3.2 Submission Method
With each submission, descriptors must be prepared and sent off to the underlying
hardware. This is expected to come with a cost, affecting throughput sizes and submission
methods differently. By submitting different sizes and comparing batching, single
submission and utilizing the DSAs queue with multi submission we will evaluate at which
data size which submission method makes sense.

Figure 3.2: Throughput for different Submission Methods and Sizes
maybe re-
meassure
with 8 KiB,
16 KiB as
sizes

In Figure 3.2 we conclude that with transfers of 1 MiB and upwards, the submission
method makes no noticeable difference. For smaller transfers the performance varies
greatly, with batch operations leading in throughput. We assume that high submission
cost of the SWQ cause all but the batch, which only performs one submission for its
many descriptors, to suffer. This is aligned with the finding that ‘SWQ observes lower
throughput between 1-8 KB [transfer size]’ [5, p. 6 and 7].

3.3. MULTITHREADED SUBMISSION 11 / 30

Another limitation may be observed in this result, namely the inherent throughput
limit per DSA chip of close to 30 GiB/s. This is apparently caused by I/O fabric
limitations [5, p. 5].

3.3 Multithreaded Submission
write this
section

• effect of mt-submit, low because SWQ implicitly synchronized, bandwidth is shared

• show results for all available core counts

• only display the 1engine tests

• show combined total throughput

• conclude that due to the implicit synchronization the sync-cost also affects 1t and
therefore it makes no difference, bandwidth is shared, no guarantees on fairness

write this
section

3.4 Data Movement from DDR to HBM
write this
section

• present two copy methods: smart and brute force

• show graph for ddr->hbm intranode, ddr->hbm intrasocket, ddr->hbm intersocket

• conclude which option makes more sense (smart)

• because 4x or 2x utilization for only 1.5x or 1.25x speedup respectively

• maybe benchmark smart-copy intersocket in parallel with two smart-copies intra-
socket VS. the same task with brute force

3.5 Analysis
write this
section

• summarize the conclusions and define the point at which dsa makes sense

• minimum transfer size for batch/nonbatch operation

• effect of mtsubmit -> no fairness guarantees

• usage of multiple engines -> no effect

• smart copy method as the middle-ground between peak throughput and utilization

• lower utilization of dsa is good when it will be shared between threads/processes

4 Design
write in-
troductory
paragraph4.1 Detailed Task Description
write this
section• give slightly more detailed task Description

• perspective of ”what problems have to be solved”

• not ”what is querry driven prefetching”

4.2 Cache Design
The task of prefetching is somewhat aligned with that of a cache. As a cache is more
generic and allows use beyond Query Driven Prefetching, the choice was made to solve
the prefetching offload by implementing an offloading Cache. When referring to the
provided implementation, Cache will be used from now on. The interface with Cache
must provide three basic functions: requesting a memory block to be cached, accessing
a cached memory block and synchronizing cache with the source memory. The latter
operation comes in to play when the data that is cached may also be modified, requiring
the entry to be updated with the source or the other way around. Due to the many
possible setups and use cases, the user should also be responsible for choosing cache
placement and the copy method. As re-caching is resource intensive, data should remain
in the cache for as long as possible while being removed when memory pressure due to
restrictive memory size drives the Cache to flush unused entries.

For reference, the public interface which we will develop throughout this section is
visualized in Figure 4.1 for both classes created. Colour coding signals thread safety where
grey denotes impossibility for threaded access. Green indicates full safety guarantees
only relying on atomics to achieve this. Turquoise functions use locking mechanisms to
achieve thread safety. Operations in yellow may observe threading effects from atomics
but are still inherently safe to call. Finally, red markers indicate unsafe functions which
must be called from a single threaded context. As we implement these classes in C++
in Chapter 5, we also utilize C++-Notation for functions in the figure here.

4.2.1 Interface

To allow rapid integration and ease developer workload, a simple interface was chosen.
As this work primarily focuses on caching static data, the choice was made only
to provide cache invalidation and not synchronization. Given a memory address,

13

14 / 30 CHAPTER 4. DESIGN

Figure 4.1: Public Interface of CacheData and Cache Classes

Cache::Invalidate will remove all entries for it. The other two operations are provided
in one single function, which we shall call Cache::Access henceforth, receiving a data
pointer and size it takes care of either submitting a caching operation if the pointer
received is not yet cached or returning the cache entry if it is. The cache placement
and assignment of the task to accelerators are controlled by the user. In addition to
the two basic operations outlined before, the user also is given the option to flush the
cache using Cache::Flush of unused elements manually or to clear it completely with
Cache::Clear. This interface is represented on the right block of Figure 4.1 labelled
‘Cache’.

As caching is performed asynchronously, the user may wish to wait on the opera-
tion. This would be beneficial if there are other threads making progress in parallel
while the current thread waits on its data becoming available in the faster cache,
speeding up local computation. To achieve this, the Cache::Access will return an
instance of an object which from hereinafter will be referred to as CacheData. Through
CacheData::GetDataLocation a pointer to the cached data will be retrieved, while also
providing CacheData::WaitOnCompletion which must only return when the caching
operation has completed and during which the current thread is put to sleep, allowing
other threads to progress. Figure 4.1 also documents the public interface for CacheData
on the left block labelled as such.

4.2.2 Cache Entry Reuse

When multiple consumers wish to access the same memory block through the Cache, we
could either provide each with their own entry, or share one entry for all consumers. The
first option may cause high load on the accelerator due to multiple copy operations being
submitted and also increases the memory footprint of the system. The latter option

4.2. CACHE DESIGN 15 / 30

requires synchronization and more complex design. As the cache size is restrictive, the
latter was chosen. The already existing CacheData will be extended in scope to handle
this by allowing copies of it to be created which must synchronize with each other for
CacheData::WaitOnCompletion and CacheData::GetDataLocation.

4.2.3 Cache Entry Lifetime

By allowing multiple references to the same entry, memory management becomes a
concern. Freeing the allocated block must only take place when all copies of a CacheData
instance are destroyed, therefore tying cache entry lifetime to the lifetime of the longest
living copy of the original instance. This makes access to the entry legal during the
lifetime of any CacheData instance, while also guaranteeing that Cache::Clear will not
have any unforeseen side effects, as deallocation only takes place when the last consumer
has CacheData go out of scope or manually deletes it.

4.2.4 Usage Restrictions

As cache invalidation applies mainly to non-static data which this work does not focus
on, two restrictions are placed on the invalidation operation. This permits drastically
simpler cache design, as a fully coherent cache would require developing a thread safe
coherence scheme which is outside our scope.

Firstly, overlapping areas in the cache will cause undefined behaviour during invalid-
ation of any one of them. Only the entries with the equivalent source pointer will be
invalidated, while other entries with differing source pointers which, due to their size,
still cover the now invalidated region, will not be invalidated. At this point, the cache
may and may continue to contain invalid elements.

Secondly, invalidation is to be performed manually, requiring the programmer to
remember which points of data are at any given point in time cached and invalidating
them upon modification. No ordering guarantees will be given for this situation, possibly
leading to threads still having a pointer to now-outdated entries and continuing their
progress with this.

Due to its reliance on libnuma for memory allocation and thread pinning, Cache will
only work on systems where this library is present, excluding, most notably, Windows
from the compatibility list.

4.2.5 Accelerator Usage

Compared with the challenges of ensuring correct entry lifetime and thread safety, the
application of DSA for the task of duplicating data is simple, thanks partly to Intel DML
[6]. Upon a call to Cache::Access and determining that the given memory pointer
is not present in cache, work will be submitted to the Accelerator. Before, however,
the desired location must be determined which the user-defined cache placement policy
function handles. With the desired placement obtained, the copy policy then determines,
which nodes should take part in the copy operation which is equivalent to selecting
the Accelerators following 2.3.1. This causes the work to be split upon the available
accelerators to which the work descriptors are submitted at this time. The handlers

16 / 30 CHAPTER 4. DESIGN

that Intel DML [6] provides will then be moved to the CacheData instance to permit
the callee to wait upon caching completion. As the choice of cache placement and copy
policy is user-defined, one possibility will be discussed in 5.

5 Implementation
write in-
troductory
paragraph5.1 Locking and Usage of Atomics

The usage of locking and atomics proved to be the challenging. Their use is performance
critical and mistakes may lead to deadlock. Therefore, they also constitute the most
interesting part of the implementation which is why this chapter will focus extensively
on the details of the implementation in regard to these.

5.1.1 Cache State Lock

To keep track of the current cache state the Cache will hold a reference to each currently
existing CacheData instance. The reason for this is twofold: In 4.2 we decided to keep
elements in the cache until forced by memory pressure to remove them. Secondly in
4.2.2 we decided to reuse one cache entry for multiple consumers. The second part
requires access to the structure holding this reference to be thread safe when accessing
and extending the cache state in Cache::Access, Cache::Flush and Cache::Clear.
The latter two both require a unique lock, preventing other calls to Cache from making
progress while the operation is being processed. For Cache::Access the use of locking
depends upon the caches state. At first only a shared lock is acquired for checking whether
the given address already resides in cache, allowing other Cache::Access-operations to
also perform this check. If no entry for the region is present, a unique lock is required as
well when adding the newly created entry to cache.

A map was chosen to represent the current cache state with the key being the memory
address of the entry and as value the CacheData instance. As the caching policy is
controlled by the user, one datum may be requested for caching in multiple locations. To
accommodate this, one map is allocated for each available node of the system. This can
be exploited to reduce lock contention by separately locking each nodes state instead of
utilizing a global lock. This ensures that Cache::Access and the implicit Cache::Flush
it may cause can not hinder progress of caching operations on other nodes. Both
Cache::Clear and a complete Cache::Flush as callable by the user will now iteratively
perform their respective task per nodes state, also allowing other nodes to progress.

Even with this optimization, in scenarios where the Cache is frequently tasked with
flushing and re-caching by multiple threads from the same node lock contention will
negatively impact performance by delaying cache access. Due to passive waiting, this
impact might be less noticeable when other threads on the system are able to make
progress during the wait.

17

18 / 30 CHAPTER 5. IMPLEMENTATION

5.1.2 CacheData Atomicity

The choice made in 4.2.2 requires thread safe shared access to the same resource.
std::shared_ptr<T> provides a reference counted pointer, which is thread safe for the
required operations, making it a prime candidate for this task. An implementation using
it was explored but proved to offer its own set of challenges. As we wish to reduce time
spent in a locked region, the task is only added to the nodes cache state when locked.
Submission takes place outside, which is sensible, as this submitting one task should
not hinder accessing another. To achieve the safety for CacheData::WaitOnCompletion
outlined in 4.2.2 this would require the threads to coordinate which thread performs the
actual waiting, as we assume the handlers of Intel DML to be non-threadsafe. In order
to avoid queuing multiple of the same copies, the task must be added before submission.
This results in a CacheData instance with invalid cache pointer and no handlers to wait
for being available, requiring additional usage of synchronization primitives. With using
std::shared_ptr<T> also comes the uncertainty of relying on the implementation to
be performant. The standard does not specify whether a lock-free algorithm is to be
used and [13] suggests abysmal performance for some implementations, although the full
article is in Korean. No further research was found on this topic.

It was therefore decided to implement atomic reference counting for CacheData which
means providing a custom constructor and destructor wherein a shared (through a
standard pointer however) atomic integer is either incremented or decremented using
atomic fetch sub and add operations [14] to increase or deacrease the reference counter
and, in case of decrease in the destructor signals that the destructor is called for the last
reference, perform actual destruction. The invalid state of CacheData achievable is also
avoided. To achieve this, the waiting algorithm requires the handlers to be contained
in an atomic pointer and the pointer to the cache memory be atomic too. Through
this we may use the atomic wait operation which is guaranteed by the standard to
be more efficient than simply spinning on Compare-And-Swap [15]. Some standard
implementations achieve this by yielding after a short spin cycle [16].

5.1. LOCKING AND USAGE OF ATOMICS 19 / 30

Figure 5.1: Sequence diagram for threading scenario in CacheData::WaitOnCompletion

Designing the wait to work from any thread was complicated. In the first implementa-
tion, a thread would check if the handlers are available and if not atomically wait [15]
on a value change from nullptr. As the handlers are only available after submission, a
situation could arise where only one copy of CacheData is capable of actually waiting on
them. Lets assume that three threads T1, T2 and T3 wish to access the same resource.
T1 now is the first to call CacheData::Access and therefore adds it to the cache state
and will perform the work submission. Before T1 may submit the work, it is interrupted
and T2 and T3 obtain access to the incomplete CacheData on which they wait, causing
them to see a nullptr for the handlers but invalid cache pointer, leading to atomic wait
on the cache pointer (marked blue lines in 5.1). Now T1 submits the work and sets the
handlers (marked red lines in 5.1), while T2 and T3 continue to wait. Now only T1 can
trigger the waiting and is therefore capable of keeping T2 and T3 from progressing. This
is undesirable as it can lead to deadlocking if by some reason T1 does not wait and at the
very least may lead to unnecessary delay for T2 and T3 if T1 does not wait immediately.

20 / 30 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Code Flow Diagram for CacheData::WaitOnCompletion

To solve this, a different and more complicated order of waiting operations is required.
When waiting, the threads now immediately check whether the cache pointer contains a
valid value and return if it does, as nothing has to be waited for in this case. Let’s take
the same example as before to illustrate the second part of the waiting procedure. T2

and T3 now both arrive in this latter section as the cache was invalid at the point in
time when waiting was called for. They now atomically wait on the handlers pointer to
change, instead of doing it the other way around as before. Now when T1 supplies the
handlers, it also uses std::atomic<T>::notify_one [17] to wake at least one thread
waiting on value change of the handlers pointer, if there are any. Through this the
exclusion that was observable in the first implementation is already avoided. If nobody
is waiting, then the handlers will be set to a valid pointer and a thread may pass the
atomic wait instruction later on. Following this wait, the handlers pointer is atomically
exchanged [18] with nullptr, invalidating it. Now each thread again checks whether
it has received a valid local pointer to the handlers from the exchange, if it has then
the atomic operation guarantees that is now in sole possession of the pointer. The
owning thread is tasked with actually waiting. All other threads will now regress and
call CacheData::WaitOnCompletion again. The solo thread may proceed to wait on the
handlers and should update the cache pointer.

Some two additional cases must be considered for the latter implementation to be
safe. The wait operation first checks for a valid cache pointer and then waits on the
handlers becoming valid. After processing the handlers, they are deleted and the pointer
therefore invalidated. Should the cache pointer now be invalid as well, deadlocks would
ensue. Therefore, the thread which exchanged the handlers pointer for a valid local copy

5.1. LOCKING AND USAGE OF ATOMICS 21 / 30

must set the cache pointer to a valid value. Should one of the offloaded operations have
failed, using the cache pointer is out of question as the datum it references might be
invalid. The cache is set to the source address in this case. Secondly, after one thread
has exchanged the pointer locally, threads may collect waiting on the handlers to become
available. This can happen when the wait on the handlers takes sufficient amount of time
during which both handlers and cache pointer are invalid. After waiting, the responsible
thread must therefore signal all [19] threads waiting on the handler to continue.

Two types of deadlocks were encountered during testing and have been accounted for.
On one hand, it was found that the guarantee of std::atomic<T>::wait to only wake
up when the value has changed [15] is stronger than the promise of waking up all waiting
threads with std::atomic<T>::notify_all [19]. The value of the handler pointer may
therefore not be exchanged with nullptr which is the value we wait on. As the highest
envisioned address requires the lower 52-bits of current 64-bit wide systems [20, p. 120]
[21, p. 4-2] setting all bits of a 64-bit-value yields an invalid pointer which is used as
the second invalid state possible. The second type was encountered when after creating
a CacheData instance it was determined this exists in the cache already and dropped.
As destruction waits on completion in order to ensure that no further jobs require the
memory held, a deadlock would arise from the cache and handler pointers both being
null and no handlers ever being set due to the instance being deleted immediately. To
circumvent this, the constructor of CacheData was modified to point to source memory
by default. Only after calling a separate initialization function will CacheData replace
this with nullptr, therefore readying the instance for multithreaded usage.

5.1.3 Performance Guideline

Atomic operations come with an added performance penalty. No recent studies were
found on this, although we assume that the findings of Hermann Schweizer et al. in
“Evaluating the Cost of Atomic Operations on Modern Architectures“ [22] still hold
true for today’s processor architectures. Due to the inherent cache synchronization
mechanisms in place [22, Subsection IV.A.3 Off-Die Access], they observed significant
access latency increase depending on whether the atomic variable was located on the local
core, on a different core on the same chip or on another socket [22, Fig. 4]. Reducing the
cost of atomic accesses would require a less generic implementation, reducing some of
the guarantees we give in 4.2. This would allow reducing the amount of atomics required
but is outside the scope of this work.

With the distributed locking described in 5.1.1, lock contention should not have a
significant impact, although this remains to be tested. In addition to that, passive waiting
at the contended section will benefit other threads and might allow overall progress
to continue, if the application utilizing the cache has a threading model supporting
this. These two factors lead us to classify lock contention as only a minor performance
problem.

22 / 30 CHAPTER 5. IMPLEMENTATION

5.2 Accelerator Usage
After 4.2.5 the implementation of Cache provided leaves it up to the user to choose a
caching and copy method policy which is accomplished through submitting function
pointers at initialization of the Cache. In 2.5 we configured our system to have separate
NUMA-Node (Node)s for accessing HBM which are assigned a Node-ID by adding eight
to the Nodes ID of the Node that physically contains the HBM. Therefore, given Node
3 accesses some datum, the most efficient placement for the copy would be on Node
3 + 8 == 11. As the Cache is intended for multithreaded usage, conserving accelerator
resources is important, so that concurrent cache requests complete quickly. To get high
per-copy performance while maintaining low usage, the smart-copy method is selected
as described in 3.4 for larger copies, while small copies will be handled exclusively by
the current node. This distinction is made due to the overhead of assigning the current
thread to the selected nodes, which is required as Intel DML assigns submissions only to
the DSA engine present on the node of the calling thread [6, Section ”NUMA support”].
No testing has taken place to evaluate this overhead and determine the most effective
threshold.

6 Evaluation

…evaluation … write this
chapter

23

7 Conclusion And Outlook
write in-
troductory
paragraph7.1 Conclusions
write this
section

7.2 Future Work
write this
section

• analyse whether prefetching yields better performance than hbm caching mode [2]

• evaluate impact of lock contention and atomics on performance

• provide optimized use case specific versions with less locking

• extend the cache implementation use cases where data is not static

25

Glossary

A

ATC
... desc ...

B

BAR
... desc ...

D

DMR
... desc ...

DSA
... desc ...

DWQ
... desc ...

E

Engine
... desc ...

ENQCMD
... desc ...

G

Group
... desc ...

H

HBM
... desc ...

27

28 / 30 Glossary

I

Intel DML
... desc ...

IOMMU
... desc ...

M

MOVDIR64B
... desc ...

N

Node
... desc ...

P

PASID
... desc ...

S

SWQ
... desc ...

W

WQ
... desc ...

Bibliography

[1] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin and K. Kim, ‘Hbm (high
bandwidth memory) dram technology and architecture’, in 2017 IEEE International
Memory Workshop (IMW), 2017, pp. 1–4. doi: 10.1109/IMW.2017.7939084.

[2] Intel. ‘Intel® Xeon® CPU Max Series Product Brief’. (6th Jan. 2023), [Online].
Available: https://www.intel.com/content/www/us/en/content-details/
765259/intel-xeon-cpu-max-series-product-brief.html (visited on 18th Jan.
2024).

[3] Intel. ‘Intel® Data Streaming Accelerator Architecture Specification’. (16th Sep.
2022), [Online]. Available: https : / / www . intel . com / content / www / us /
en / content - details / 671116 / intel - data - streaming - accelerator -
architecture-specification.html (visited on 15th Nov. 2023).

[4] Intel. ‘New Intel® Xeon® Platform Includes Built-In Accelerators for Encryption,
Compression, and Data Movement’. (Dec. 2022), [Online]. Available: https://www.
intel.com/content/dam/www/central-libraries/us/en/documents/2022-
12/storage-engines-4th-gen-xeon-brief.pdf (visited on 15th Nov. 2023).

[5] R. K. et al. ‘A Quantitative Analysis and Guideline of Data Streaming Accelerator
in Intel® 4th Gen Xeon® Scalable Processors’. (May 2023), [Online]. Available:
https://arxiv.org/pdf/2305.02480.pdf (visited on 7th Jan. 2024).

[6] Intel, Intel Data Mover Library Documentation, https://intel.github.io/DML/
documentation/api_docs/high_level_api.html. (visited on 7th Jan. 2024).

[7] Intel, Intel IDXD User Space Application, https://github.com/intel/idxd-
config. (visited on 7th Jan. 2024).

[8] Debian, Debian manpage 3 for libnuma-dev. [Online]. Available: https://manpages.
debian.org/bookworm/libnuma-dev/numa.3.en.html (visited on 21st Jan.
2024).

[9] J. C. Sam Kuo. ‘Implementing High Bandwidth Memory and Intel Xeon Processors
Max Series on Lenovo ThinkSystem Servers’. (26th Jun. 2023), [Online]. Available:
https://lenovopress.lenovo.com/lp1738.pdf (visited on 21st Jan. 2024).

[10] Intel. ‘Intel® Data Streaming Accelerator User Guide’. (11th Jan. 2023), [Online].
Available: https://www.intel.com/content/www/us/en/content-details/
759709/intel-data-streaming-accelerator-user-guide.html (visited on
15th Nov. 2023).

[11] A. Huang. ‘Enabling Intel Data Streaming Accelerator on Lenovo ThinkSystem
Servers’. (), [Online]. Available: https://lenovopress.lenovo.com/lp1582.pdf
(visited on 18th Apr. 2022).

29

https://doi.org/10.1109/IMW.2017.7939084
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/765259/intel-xeon-cpu-max-series-product-brief.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-12/storage-engines-4th-gen-xeon-brief.pdf
https://arxiv.org/pdf/2305.02480.pdf
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://intel.github.io/DML/documentation/api_docs/high_level_api.html
https://github.com/intel/idxd-config
https://github.com/intel/idxd-config
https://manpages.debian.org/bookworm/libnuma-dev/numa.3.en.html
https://manpages.debian.org/bookworm/libnuma-dev/numa.3.en.html
https://lenovopress.lenovo.com/lp1738.pdf
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://www.intel.com/content/www/us/en/content-details/759709/intel-data-streaming-accelerator-user-guide.html
https://lenovopress.lenovo.com/lp1582.pdf

30 / 30 Bibliography

[12] A. C. Fürst, Accompanying Thesis Repository. [Online]. Available: https://git.
constantin-fuerst.com/constantin/bachelor-thesis.

[13] T. Ku and N. Jung, ‘Implementation of Lock-Free shared_ptr and weak_ptr for
C++11 multi-thread programming’, in Journal of Korea Game Society, vol. 21,
28th Feb. 2021, pp. 55–65. doi: 10.7583/jkgs.2021.21.1.55..

[14] Unknown. ‘CPP Reference List of Atomic Operations’. (), [Online]. Available:
https://en.cppreference.com/w/cpp/thread#Atomic_operations (visited on
18th Jan. 2024).

[15] Unknown. ‘CPP Reference Entry on std::atomic<T>::wait’. (), [Online]. Available:
https://en.cppreference.com/w/cpp/atomic/atomic/wait (visited on
18th Jan. 2024).

[16] T. Rodgers. ‘Implementing C++20 atomic waiting in libstdc++’. (6th Dec. 2022),
[Online]. Available: https://developers.redhat.com/articles/2022/12/
06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_
atomic_waiting_ (visited on 18th Jan. 2024).

[17] Unknown. ‘CPP Reference Entry on std::atomic<T>::notify_one’. (), [Online].
Available: https://en.cppreference.com/w/cpp/atomic/atomic/notify_one
(visited on 18th Jan. 2024).

[18] Unknown. ‘CPP Reference Entry on std::atomic<T>::exchange’. (), [Online]. Avail-
able: https://en.cppreference.com/w/cpp/atomic/atomic/exchange (visited
on 18th Jan. 2024).

[19] Unknown. ‘CPP Reference Entry on std::atomic<T>::notify_all’. (), [Online].
Available: https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
(visited on 18th Jan. 2024).

[20] AMD. ‘AMD64 Programmer’s Manual Volume 2: System Programming’. (Dec.
2016), [Online]. Available: https://support.amd.com/TechDocs/24593.pdf
(visited on 18th Jan. 2024).

[21] Intel. ‘Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1’. (Dec. 2016), [Online]. Available: https:
//support.amd.com/TechDocs/24593.pdf (visited on 18th Jan. 2024).

[22] H. Schweizer, M. Besta and T. Hoefler, ‘Evaluating the Cost of Atomic Operations
on Modern Architectures’, in 2015 International Conference on Parallel Architecture
and Compilation (PACT), 2015, pp. 445–456. doi: 10.1109/PACT.2015.24.

https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://git.constantin-fuerst.com/constantin/bachelor-thesis
https://doi.org/10.7583/jkgs.2021.21.1.55.
https://en.cppreference.com/w/cpp/thread#Atomic_operations
https://en.cppreference.com/w/cpp/atomic/atomic/wait
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_can_we_implement_atomic_waiting_
https://en.cppreference.com/w/cpp/atomic/atomic/notify_one
https://en.cppreference.com/w/cpp/atomic/atomic/exchange
https://en.cppreference.com/w/cpp/atomic/atomic/notify_all
https://support.amd.com/TechDocs/24593.pdf
https://support.amd.com/TechDocs/24593.pdf
https://support.amd.com/TechDocs/24593.pdf
https://doi.org/10.1109/PACT.2015.24

	List of Figures
	Introduction
	Technical Background
	High Bandwidth Memory
	Query Driven Prefetching
	Intel Data Streaming Accelerator
	Programming Interface
	System Setup and Configuration

	Performance Microbenchmarks
	Benchmarking Methodology
	Submission Method
	Multithreaded Submission
	Data Movement from DDR to HBM
	Analysis

	Design
	Detailed Task Description
	Cache Design

	Implementation
	Locking and Usage of Atomics
	Accelerator Usage

	Evaluation
	Conclusion And Outlook
	Conclusions
	Future Work

	Glossary
	Bibliography

