import os import csv import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt output_path = "./plots" hbm_result = "./evaluation-results/current/qdp-xeonmax-hbm-tca4-tcb0-tcj1-tmul32-wl4294967296-cs2097152.csv" dram_result = "./evaluation-results/current/qdp-xeonmax-dram-tca2-tcb0-tcj1-tmul32-wl4294967296-cs2097152.csv" prefetch_result = "./evaluation-results/current/qdp-xeonmax-prefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" distprefetch_result = "./evaluation-results/current/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" tt_name = "rt-ns" function_names = ["aggrj-run" , "scana-run", "scanb-run" ] fn_nice_prefetch = [ "Aggregate" ,"Scan A", "Scan A and B (parallel)"] fn_nice_normal = [ "Aggregate" , "Scan A", "NULL"] def read_timings_from_csv(fname, fn_nice) -> tuple[list[float], list[str]]: t = {} row_count = 0 with open(fname, newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: row_count = row_count + 1 for i in range(len(function_names)): t[fn_nice[i]] = t.get(fn_nice[i], 0) + int(row[function_names[i]]) t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0} if len(t.keys()) == 3: t[fn_nice[1]] = t[fn_nice[1]] - t[fn_nice[2]] return list(t.values()), list(t.keys()) def read_total_time_from_csv(fname) -> float: time = 0 row_count = 0 with open(fname, newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: row_count = row_count + 1 time += int(row["rt-ns"]) return time / (1000 * 1000 * row_count) def read_cache_hitrate_from_csv(fname) -> float: hitrate = 0 row_count = 0 with open(fname, newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: row_count = row_count + 1 hitrate += float(row["cache-hr"]) return (hitrate * 100) / row_count def generate_speedup_table(): baseline = read_total_time_from_csv(dram_result) columns = [ "Configuration", "Speedup", "Cache Hitrate", "Raw Time" ] names = [ "DDR-SDRAM (Baseline)", "HBM (Upper Limit)", "Prefetching", "Prefetching, Distributed Columns" ] rawtime = [ read_total_time_from_csv(dram_result), read_total_time_from_csv(hbm_result), read_total_time_from_csv(prefetch_result), read_total_time_from_csv(distprefetch_result), ] speedup = [ baseline / rawtime[0], baseline / rawtime[1], baseline / rawtime[2], baseline / rawtime[3] ] cachehr = [ 0, 0, read_cache_hitrate_from_csv(prefetch_result), read_cache_hitrate_from_csv(distprefetch_result) ] data = [ [ names[0], f"x{speedup[0]:1.2f}", r" \textemdash ", f"{rawtime[0]:.2f} ms" ], [ names[1], f"x{speedup[1]:1.2f}", r" \textemdash ", f"{rawtime[1]:.2f} ms" ], [ names[2], f"x{speedup[2]:1.2f}", f"{cachehr[2]:2.2f} \%", f"{rawtime[2]:.2f} ms" ], [ names[3], f"x{speedup[3]:1.2f}", f"{cachehr[3]:2.2f} \%", f"{rawtime[3]:.2f} ms" ] ] return pd.DataFrame(data, columns=columns) def generate_rawtime_base_table(): baseline = read_total_time_from_csv(dram_result) columns = [ "Configuration", "Raw Time" ] names = [ "DDR-SDRAM (Baseline)", "HBM (Upper Limit)" ] rawtime = [ read_total_time_from_csv(dram_result), read_total_time_from_csv(hbm_result) ] data = [ [ names[0], f"{rawtime[0]:.2f} ms" ], [ names[1], f"{rawtime[1]:.2f} ms" ] ] return pd.DataFrame(data, columns=columns) def tex_table(df, fname): with open(os.path.join(output_path, fname), "w") as of: of.write(df.to_latex(index=False)) # loops over all possible configuration combinations and calls # process_file_to_dataset for them in order to build a dataframe # which is then displayed and saved def donut_plot(data: tuple[list[float], list[str]], maxtime, fname): # pad to maxtime data[0].append(maxtime - sum(data[0])) data[1].append("NULL") # pad to only display semi-circle data[0].append(sum(data[0])) data[1].append("NULL") fig, (ax, lax) = plt.subplots(nrows=2, gridspec_kw={"height_ratios":[4, 1]}) palette_color = sns.color_palette('mako_r') wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), colors=palette_color) wedges[-1].set_visible(False) wedges[-2].set_visible(False) ax.set_ylim(-0.0, 1.0) legend_labels = [f"{data[0][i]:3.2f} ms - {data[1][i]}" for i in range(len(data[0])) if data[1][i] != "NULL"] lax.legend(wedges, legend_labels, borderaxespad=0, loc="upper center") lax.set_ylim(0.0, 0.25) lax.axis("off") plt.tight_layout() plt.rcParams.update({'font.size': 16}) fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') def main(): timings = [ read_timings_from_csv(prefetch_result, fn_nice_prefetch), read_timings_from_csv(distprefetch_result, fn_nice_prefetch), read_timings_from_csv(dram_result, fn_nice_normal), read_timings_from_csv(hbm_result, fn_nice_normal) ] maxtime = max([sum(timings[0][0]), sum(timings[1][0]), sum(timings[2][0]), sum(timings[3][0])]) donut_plot(timings[0], maxtime, "plot-timing-prefetch.pdf") donut_plot(timings[1], maxtime, "plot-timing-distprefetch.pdf") donut_plot(timings[2], maxtime, "plot-timing-dram.pdf") donut_plot(timings[3], maxtime, "plot-timing-hbm.pdf") donut_plot(read_timings_from_csv(prefetch_result, fn_nice_prefetch), maxtime, "plot-timing-prefetch.pdf") tex_table(generate_speedup_table(), "table-qdp-speedup.tex") tex_table(generate_rawtime_base_table(), "table-qdp-baseline.tex") if __name__ == "__main__": main()