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1 Introduction







2 Technical Background

2.1 High Bandwidth Memory

2.2 Query Driven Prefetching

2.3 Intel Data Streaming Accelerator

Intel DSA is a high-performance data copy and transformation accelerator
that will be integrated in future Intel® processors, targeted for optimizing
streaming data movement and transformation operations common with ap-
plications for high-performance storage, networking, persistent memory, and
various data processing applications. [1, p. 15]

Introduced with the 4th generation of Intel Xeon Scalable Processors [2], the DSA
promises to alleviate the CPU from ‘common storage functions and operations such as
data integrity checks and deduplication’ [2]. This chapter will give an overview of the
architecture, software and the interaction of these two components. The reader will be
familiarized with the setup and equipped with the knowledge to configure the system for
a specific use case.

To be able to optimally utilize the Hardware, knowledge of its workings is required to
make educated decisions. Therefore, this section describes both the workings of the DSA
engine itself and the view that is presented through software interfaces. All statements
are based on Chapter 3 of the Architecture Specification by Intel [1].
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2.3.1 Hardware Architecture

1/O fabric interface |

| | | I Update
Submit config registers
work

WaQ configuration | I Address translation cache (ATC) | Memory read/write
Portals

Address translation (w/ IOMMU) Memory access

I___________________________________—___—_________________________________-I
. Y
! Work queue 0 Lyl Processing engine 0 |
1| (WQO, shared) _ (PE 0) !
: B o BD_WDO !
1 a alcl o
2 BD_WD1 !
! © Sl ¥ processing = et g
! g descriptor (BD) i BD_WD2 descriptor 2.
: W.Q L 3 BD_WD3 processing o
! (dedicated) & MR Work unit :
\ descriptor (WD), .
1
! 1
! 1

| Arbiters | i|

—> PE M-1 |

Figure 2.1:
Internal Archtiecture Block Diagramm
Taken from Figure la of [3]

The accelerator is directly integrated into the Processor and attaches via the I/O fabric
interface over which all communication is conducted. Over this interface, it is accessible
as a PCle device. Configuration therefore is done through memory-mapped registers set
in the devices Base Address Register (BAR). Through these, the devices layout is defined
and memory pages for work submission are set. In a system with multiple processing
nodes, there may also be one DSA per node.

To satisfy different use cases, as already mentioned, the layout of the DSA may be
software-defined. The structure is made up of three components, namely Work Queue
(WQ)s, Engines and Groups. WQs provide the means to submit tasks to the device and
will be described in more detail shortly. An Engine is the processing-block that connects
to memory and performs the described task. Using Groups, Engines and WQs are tied
together. This means, that tasks from one W(Q may be processed from multiple Engines
and that vice-versa, depending on the configuration. This flexibility is achieved through
the Group Arbiter which connects the two components and acts according to the setup.

A WQ is accessible through so-called portals, which are mapped memory regions.
Submission of work is done by writing a descriptor to one of these portals. A descriptor
is 64 Byte in size and may contain one specific task (task descriptor) or the location of a
task array in memory (batch descriptor). Through these portals, the submitted descriptor
reaches a queue of which there are two types with different submission methods and
use cases. The Shared Work Queue (SWQ) is intended to provide synchronized access
to multiple processes and each group may only have one attached. A PCle Deferrable
Memory Write Request (DMR), which guarantees implicit synchronization, is generated
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via x86 Instruction ENQCMD and communicates with the device before writing. This
results in higher submission cost, compared to the Dedicated Work Queue (DWQ) to
which a descriptor is submitted via x86 Instruction MOVDIR64B. The DWQ is therefore
more performant but may require access control mechanisms and may only be accessed
by one process at a time.

To handle the different descriptors, each Engine has two internal execution paths.
One for a task and the other for a batch descriptor. Processing a task descriptor is
straightforward, as all information required to complete the operation are contained
within. For a batch, the DSA first reads the batch descriptor, then fetches all task
descriptors for the batch from memory and processes them. An Engine can also trigger
a page fault when trying to access an unloaded page and wait on its completion, if
configured to do so. Otherwise, an error will be generated in this scenario.

Ordering of operations is only guaranteed for a configuration with one WQ and one
Engine in a Group when submitting exclusively batch or task descriptors but no mixture.
Even then, only write-ordering is guaranteed, meaning that ‘reads by a subsequent
descriptor can pass writes from a previous descriptor’ [1, p. 30]. A different issue arises,
should an operation fail: the DSA will continue to process the following descriptors.
Care must therefore be taken with read-after-write scenarios, either by waiting for a
successfull completion before submitting the dependant, inserting a drain descriptor for
tasks or setting the fence flag for a batch. The latter two methods tell the processing
engine that all writes must be commited and, in case of the fence in a batch, abort on
previous error.

An important aspect of modern computer systems is the separation of address spaces
through virtual memory. The DSA must therefore handle address translation, as a
process submitting a task will not know the physical location in memory which causes
the descriptor to contain virtual values. For this, the Engine communicates with the
Input/Output Memory Management Unit (IOMMU) and Address Translation Cache
(ATC) to perform this operation. For this, knowledge about the submitting processes is
required, and therefore each task descriptor has a field for the Process Address Space ID
(PASID) which is filled by the ENQCMD instruction for a SWQ or set statically after a
process is attached to a DWQ.

The completion of a descriptor may be signaled through a completion record and
interrupt, if configured so. For this, the DSA ‘provides two types of interrupt message
storage: (1) an MSI-X table, enumerated through the MSI-X capability; and (2) a
device-specific Interrupt Message Storage (IMS) table’ [1, p. 27].
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2.3.2 Software View
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Figure 2.2:
Software View Block Diagramm
Taken from Figure la of [3]

Due to efforts by intel programmers, since Linux Kernel 5.10 [4, Installation Instructinos],
there exists a driver for the DSA [5] which has no counterpart in the Windows OS-Family
[4, Installation Instructinos|, meaning code developed without an alternative path will
not work there. To interface with the driver and perform configuration operations,
intels libaccel-conf [6] user space toolset may be used which provides a command-line
interface and can read configuration files to set up the device as described previously.
After successful configuration, each WQ is exposed as a character device by mmap of the
associated portal [3, p. 3].

Given the file permissions, it would now be possible for a process to submit work to
the DSA via either MOVDIR64B or ENQCMD instructions, providing the descriptors
by manually configuring them. This, however, is quite cumbersome, which is why Intels
Data Mover Library [4] exists. With some limitations (like lacking support for DWQs)
this library presents a high-level interface that takes care of creation and submission of
descriptors, some error handling and reporting. Thanks to the high-level-view the code
may choose a different execution path at runtime which allows the memory operations to
either be executed in hardware (on a DSA) or in software (using equivalent instructions
provided by the library) which makes code based upon it automatically compatible with
systems that do not provide hardware or software support.
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o drain descriptor / drain command signals completion of preceding descriptors for
fencing in non-batch submissions, in batches the “fence flag’ can be used to ensure
ordering, failures before a fence will lead to the following descriptors being aborted

[1, p. 30], sfence or mfence should be executed before pushing drain descriptor [1,
p. 32]

o cache control flag in descriptor controls whether writes are directed to cache or to
memory [1, p. 31] effects on copy from DRAM > HBM unknown

2.3.3 Programming Interface -

e choice is intel data mover library

e two concepts, state-based for c-api and operation-based c+-+

o just explain the basics (no code) and refer to dml documentation

2.4 System Setup and Configuration

Give the reader the tools to replicate the setup. Also explain why the BIOS-configs -

are required.
Setup Requirements:

e VT-d enabled

« limit CPUPA to 46 Bits disabled

o IOMMU enabled

e kernel with iommu and idxd driver support
e kernel option "intel iommu=on,sm_ on”

e numa nodes for hbm access in bios






3 Performance Microbenchmarks

3.1

Benchmarking Methodology

3.2

Submission Method

3.3

submit cost analysis: best method and for a subset the point at which submit cost
< time savings

display the full opt-submitmethod graph

maybe remeassure with higher amount of small copies? results look somewhat
weird for 1k and 4k

display the stacked bar of submit and complete time for single@1k, single@4k,
single@1mib for HW-path and SW-path

display the stacked bar of submit and complete time for batch50@1k, batch50@4k,
batch50@1mib for HW-path and SW-path

show batch because we care about the minimum task set size for a single producer
(multi submit would be used for different task sets)

conclude at which point using the DSA makes sense

Multithreaded Submission

effect of mt-submit, low because SWQ implicitly synchronized, bandwidth is shared
show results for all available core counts

only display the lengine tests

show combined total throughput

conclude that due to the implicit synchronization the sync-cost also affects 1t and
therefore it makes no difference, bandwidth is shared, no guarantees on fairness
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3.4

Multiple Engines in a Group

assumed from arch spec that multiple engines lead to greater Performance

reason is that page faults and access latency will be overlapped with preparing the
next operation

in the given scenario we observe the opposite, slight performance decrease
show multisubmit 50 for both le and 4e
maybe remeassure with each submission accessing different memory region?

conclusion?

Data Movement from DDR to HBM

present two copy methods: smart and brute force

show graph for ddr->hbm intranode, ddr->hbm intrasocket, ddr->hbm intersocket
conclude which option makes more sense (smart)

because 4x or 2x utilization for only 1.5x or 1.25x speedup respectively

maybe benchmark smart-copy intersocket in parallel with two smart-copies intra-
socket VS. the same task with brute force

Analysis

summarize the conclusions and define the point at which dsa makes sense
minimum transfer size for batch/nonbatch operation

effect of mtsubmit -> no fairness guarantees

usage of multiple engines -> no effect

smart copy method as the middle-ground between peak throughput and utilization

lower utilization of dsa is good when it will be shared between threads/processes



4 Design

4.1 Detailed Task Description

o give slightly more detailed task Description
e perspective of "what problems have to be solved”

e not "what is querry driven prefetching”

4.2 Cache Design

The task of prefetching is somewhat aligned with that of a cache. As a cache is more
generic and allows use beyond Query Driven Prefetching, the choice was made to solve
the prefetching offload by implementing an offloading Cache. When refering to the
provided implementation, Cache will be used from now on. The interface with Cache
must provide three basic functions: requesting a memory block to be cached, accessing
a cached memory block and synchronizing cache with the source memory. The latter
operation comes in to play when the data that is cached may also be modified, requiring
the entry to be updated with the source or the other way around. Due to the many
possible setups and use cases, the user should also be responsible for choosing cache
placement and the copy method. As re-caching is resource intensive, data should remain
in the cache for as long as possible while being removed when system memory pressure
due to restrictive memory size drives the Cache to flush unused entries.

4.2.1 Interface

To allow rapid integration and ease developer workload, a simple interface was chosen.

As this work primarily focuses on caching static data, the choice was made only
to provide cache invalidation and not synchronization. Given a memory address,
Cache: :Invalidate will remove all entries for it. The other two operations are provided
in one single function, which we shall call Cache: : Access henceforth, receiving a data
pointer and size it takes care of either submitting a caching operation if the pointer
received is not yet cached or returning the cache entry if it is. The cache placement
and assignment of the task to accelerators are controlled by the user. In addition to
the two basic operations outlined before, the user also is given the option to flush the
cache using Cache: :Flush of unused elements manually or to clear it completely with
Cache: :Clear.

11
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As caching is performed asynchronously, the user may wish to wait on the opera-
tion. This would be beneficial if there are other threads making progress in parallel
while the current thread waits on its data becoming available in the faster cache,
speeding up local computation. To achieve this, the Cache: :Access will return an
instance of an object which from hereinafter will be refered to as CacheData. Through
CacheData: :GetDataLocation a pointer to the cached data will be retrieved, while also
providing CacheData: :WaitOnCompletion which must only return when the caching
operation has completed and during which the current thread is put to sleep, allowing
other threads to progress.

4.2.2 Cache Entry Reuse

When multiple consumers wish to access the same memory block through the Cache,
we could either provide each with their own entry, or share one entry for all consumers.
The first option may cause high load on the accelerator due to multiple copy operations
being submited and also increases the memory footprint of the system. The latter option
requires synchronization and more complex design. As the cache size is restrictive, the
latter was chosen. The already existing CacheData will be extended in scope to handle
this by allowing copies of it to be created which must synchronize with each other for
CacheData: :WaitOnCompletion and CacheData: :GetDatalLocation.

4.2.3 Cache Entry Lifetime

By allowing multiple references to the same entry, memory management becomes a
concern. Freeing the allocated block must only take place when all copies of a CacheData
instance are destroyed, therefore tying cache entry lifetime to the lifetime of the longest
living copy of the original instance. This makes access to the entry legal during the
lifetime of any CacheData instance, while also guaranteeing that Cache: :Clear will not
have any unforseen side effects, as deallocation only takes place when the last consumer
has CacheData go out of scope or manually deletes it.

4.2.4 Usage Restrictions

As cache invalidation applies mainly to non-static data which this work does not focus
on, two restrictions are placed on the invalidation operation. This permits drastically
simpler cache design, as a fully coherent cache would require developing a thread safe
coherence scheme which is outside our scope.

Firstly, overlapping areas in the cache will cause undefined behaviour during invalida-
tion of any one of them. Only the entries with the equivalent source data pointer will be
invalidated, while other entries with differing source pointers which, due to their size,
still cover the now invalidated region, will not be invalidated and therefore the cache
may and may continue to contain invalid elements at this point.

Secondly, invalidation is to be performed manually, requiring the programmer to
remember which points of data are at any given point in time cached and invalidating
them upon modification. No ordering guarantees will be given for this situation, possibly
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leading to threads still having a pointer to now-outdated entries and continuing their
progress with this.

Due to its reliance on libnuma for numa awareness, Cache will only work on systems
where this library is present, excluding, most notably, Windows from the compatibility
list.

4.2.5 Thread Safety Guarantees

After initialization, all available operations for Cache and CacheData are fully threadsafe
but may use locks internally to achieve this. In 5 we will go into more detail on how
these guarantees are provided and how to optimize the cache for specific use cases that
may warrant less restrictive locking.

4.2.6 Accelerator Usage

Compared with the challenges of ensuring correct entry lifetime and thread safety, the
application of DSA for the task of duplicating data is simple, thanks partly to Intel Data
Mover Library (Intel DML) [4]. Upon a call to Cache: : Access and determining that the
given memory pointer is not present in cache, work will be submitted to the Accelerator.
Before, however, the desired location must be determined which the user-defined cache
placement policy function handles. With the desired placement obtained, the copy policy
function then determines, which nodes should take part in the copy operation which is
equivalent to selecting the Accelerators following 2.3.1. This causes the work to be split
upon the available accelerators to which the work descriptors are submitted at this time.
The handlers that Intel DML [4] provides will then be moved to the CacheData instance
to permit the callee to wait upon caching completion. As the choice of cache placement
and copy policy is user-defined, one possibility will be discussed in 5.






5 Implementation

5.1 Locking and Usage of Atomics

As the usage of locking and atomics may have a significant impact on performance, their
application will be discussed in detail within this section.

5.1.1 Cache State Lock

To keep track of the current cache state, a map is used internally which associates a
memory address to a CacheData instance. In 4.2.2 we decided to reuse one cache entry
for multiple consumers, requiring thread safety when accessing and extending the cache
state in Cache: :Access, Cache: :Flush and Cache: :Clear. The latter two both require
a unique lock, preventing other calls to Cache from making progress while the operation

is being processed. For Cache: : Access the use of locking depends upon the caches state.

At first only a shared lock is acquired for checking whether the given address already

resides in cache, allowing other Cache: : Access-operations to also perform this check.

If no entry for the region is present, a unique lock is required as well when adding the
newly created entry to cache, which however is a rather short operation.

In scenarios where the Cache is frequently tasked with flushing and re-caching by
multiple threads accessing large amounts of data, leading to high memory pressure, lock

contention around this lock will negatively impact performance by delaying cache access.

Due to passive waiting, this impact might be less noticeable when other threads on the
system are able to make progress during the wait.

5.1.2 CacheData Reference Counting

5.1.3 CacheData WaitOnCompletion

5.1.4 Performance Guideline

The performance impact of lock contention and atomic synchronization is not to be taken

lightly, as Cache may be used in performance critical systems. Reducing their impact
is therefore desireable which can be achieved in multiple ways. The easiest is to have
one instance of Cache per NUMA-Node (Node) which reduces both lock contention by
just serving less threads and atomic synchronization as the atomics are shared between
physically close cpu cores . This requires no code modification but does not inherently

reduce the amount of synchronization taking place. To achieve this reduction, restrictions

15
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must be placed upon the thread safety or access guarantees, which is not sensible for
this generic implementation.

5.2 Accelerator Usage

After 4.2.6 the implementation of Cache provided leaves it up to the user to choose a
caching and copy method policy which is accomplished through submitting function
pointers at initialization of the Cache. In 2.4 we configured our system to have separate
Nodes for accessing High Bandwidth Memory (HBM) which are assigned a Node-ID by
adding eight to the Nodes ID of the Node that physically contains the HBM. Therefore,
given Node 3 accesses some datum, the most efficient placement for the copy would be
on Node 3+ 8 == 11. As the Cache is intended for multithreaded usage, conserving
accelerator resources is important, so that concurrent cache requests complete quickly.
To get high per-copy performance while maintaining low usage, the smart-copy method
is selected as described in 3.5 for larger copies, while small copies under 64 MiB will be
handled exclusively by the current node. This size is quite high but due to the overhead
of assigning the current thread to the selected nodes, using only the current one is more
efficient. This assignment is required due to Intel DML not being Non Uniform Memory
Architecture (NUMA) aware and therefore assigning submissions only to the DSA engine
present on the node that the calling thread is assigned to [4].




6 Evaluation

..evaluation ...
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7 Conclusion And Outlook

7.1

Conclusions

7.2

Future Work

evaluate impact of lock contention and atomics on performance
provide optimized use case specific versions with less locking

extend the cache implementation use cases where data is not static

19






Glossary

A
ATC

.. desc ...
B
BAR

.. desc ...
D
DMR

.. desc ...
DSA

.. desc ...
DWQ

.. desc ...
E
Engine

... desc ...
ENQCMD

... desc ...
G
Group

... desc ...
H
HBM

... desc ...

21
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Glossary

Intel DML

... desc ...
IOMMU

... desc ...
M
MOVDIR64B

... desc ...
N
Node

... desc ...
NUMA

... desc ...
P
PASID

... desc ...
S
SWQ

... desc ...
w
wQ

... desc ...
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