import os import csv import numpy as np import seaborn as sns import matplotlib.pyplot as plt output_path = "./plots" hbm_result = "./evaluation-results/baseline/current-hbm/qdp-xeonmax-hbm-tca2-tcb0-tcj1-tmul16-wl4294967296-cs2097152.csv" dram_result = "./evaluation-results/baseline/current-dram/qdp-xeonmax-dram-tca2-tcb0-tcj1-tmul16-wl4294967296-cs2097152.csv" prefetch_result = "./evaluation-results/outofcacheallocation/qdp-xeonmax-prefetch-tca2-tcb1-tcj1-tmul16-wl4294967296-cs8388608.csv" distprefetch_result = "./evaluation-results/distprefetch/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" tt_name = "rt-ns" function_names = [ "scana-run", "scanb-run", "aggrj-run" ] fn_nice = [ "Scan A, Filter", "Scan B, Prefetch", "Aggregate, Project + Sum" ] def read_timings_from_csv(fname) -> tuple[list[float], list[str]]: t = {} row_count = 0 with open(fname, newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: row_count = row_count + 1 for i in range(len(function_names)): t[fn_nice[i]] = t.get(fn_nice[i], 0) + int(row[function_names[i]]) t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0} return list(t.values()), list(t.keys()) def get_data_prefetch_cache_access() -> tuple[list[float], list[str]]: total = 0.47 data = [ 0.01, 0.01, 0.04, 0.42 ] data = [ x * 100 / total for x in data ] keys = ["Cache::GetCacheNode", "Cache::Access Itself", "dml::hardware_device::submit", "dml::make_mem_move_task (operator new)"] return data,keys def get_data_prefetch_total() -> tuple[list[float], list[str]]: return read_timings_from_csv(prefetch_result) def get_data_dram_total() -> tuple[list[float], list[str]]: return # loops over all possible configuration combinations and calls # process_file_to_dataset for them in order to build a dataframe # which is then displayed and saved def main(data: tuple[list[float], list[str]], fname, unit): palette_color = sns.color_palette('mako_r') fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), startangle=-40, colors=palette_color) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = f"angle,angleA=0,angleB={ang}" kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax.annotate(f"{data[1][i]} - {data[0][i]:2.2f} {unit}", xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw) fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') if __name__ == "__main__": main(get_data_prefetch_cache_access(), "plot-timing-cacheaccess.pdf", "%") main(read_timings_from_csv(prefetch_result), "plot-timing-prefetch.pdf", "ms") main(read_timings_from_csv(distprefetch_result), "plot-timing-distprefetch.pdf", "ms") main(read_timings_from_csv(dram_result), "plot-timing-dram.pdf", "ms") main(read_timings_from_csv(hbm_result), "plot-timing-hbm.pdf", "ms")