import os import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from common import calc_throughput, load_time_mesurements, get_task_count result_path = "benchmark-results/" output_path = "benchmark-plots/" runid = "Run ID" x_label = "Destination Node" y_label = "Throughput in GiB/s" title_allnodes = \ """Copy Throughput in GiB/s tested for 1GiB Elements\n Using all 8 DSA Chiplets available on the System""" title_smartnodes = \ """Copy Throughput in GiB/s tested for 1GiB Elements\n Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket""" title_difference = \ """Gain in Copy Throughput in GiB/s of All-DSA vs. Smart Assignment""" description_smartnodes = \ """Copy Throughput in GiB/s tested for 1GiB Elements\n Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n And using only the Source and Destination Nodes DSA for Inter-Socket""" description_allnodes = \ """Copy Throughput in GiB/s tested for 1GiB Elements\n Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n Using all 8 DSA Chiplets available on the System""" index = [ runid, x_label, y_label] data = [] data_peakbench_andre = [ { runid : 0, x_label : 8, y_label : 64 }, { runid : 0, x_label : 11, y_label : 63 }, { runid : 0, x_label : 12, y_label : 40 }, { runid : 0, x_label : 15, y_label : 54 } ] # loads the measurements from a given file and processes them # so that they are normalized, meaning that the timings returned # are nanoseconds per element transfered def get_timing(file_path): divisor = get_task_count(file_path) return [ x / divisor for x in load_time_mesurements(file_path)] # procceses a single file and appends the desired timings # to the global data-array, handles multiple runs with a runid # and ignores if the given file is not found as some # configurations may not be benchmarked def process_file_to_dataset(file_path, src_node, dst_node): size = 1024*1024*1024 timing = get_timing(file_path) run_idx = 0 for t in timing: tp = calc_throughput(size, t) data.append({ runid : run_idx, x_label : dst_node, y_label : tp}) run_idx = run_idx + 1 def plot_bar(table,title,node_config): plt.figure(figsize=(2, 3)) sns.barplot(x=x_label, y=y_label, data=table, palette="mako", errorbar="sd") plt.ylim(0, 75) plt.savefig(os.path.join(output_path, f"plot-{node_config}-cpu-throughput.pdf"), bbox_inches='tight') plt.show() # loops over all possible configuration combinations and calls # process_file_to_dataset for them in order to build a dataframe # which is then displayed and saved def main(node_config,title,ext): src_node = 0 for dst_node in {8,11,12,15}: file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-1gib-{node_config}{ext}.json") process_file_to_dataset(file, src_node, dst_node) df = pd.DataFrame(data) data.clear() df.set_index(index, inplace=True) if ext == "brute": node_config = ext plot_bar(df, title, node_config) return df def plotandre(): df = pd.DataFrame(data_peakbench_andre) df.set_index(index, inplace=True) plot_bar(df, title_allnodes, "andrepeak") return df if __name__ == "__main__": dandr = plotandre() dall = main("allnodes", title_allnodes, "-cpu") dbrt = main("brute", title_allnodes, "-cpu")