import os import json import pandas as pd from pandas.core.ops import methods import seaborn as sns import matplotlib.pyplot as plt x_label = "Copy Type" y_label = "Time in Microseconds" var_label = "Thread Counts" thread_counts = ["1t", "2t", "4t", "8t", "12t"] thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"] engine_counts = ["1e", "4e"] engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"] data = { x_label : thread_counts_nice, engine_counts_nice[0] : [], engine_counts_nice[1] : [], } def index_from_element(value,array): for (idx,val) in enumerate(array): if val == value: return idx return 0 # Function to load and process the JSON file for the multi-threaded benchmark def load_and_process_mt_json(file_path): with open(file_path, 'r') as file: data = json.load(file) # Extracting count from JSON structure count = data["count"] # Extracting time from JSON structure for elements 0 to count times = [data["list"][i]["report"]["time"]["combined_avg"] for i in range(count)] # Calculating the average of times average_time = sum(times) / count return average_time # Function to plot the graph for the new benchmark def plot_mt_graph(file_paths, engine_label): times = [] for file_path in file_paths: # Load and process JSON file for the new benchmark time_microseconds = load_and_process_mt_json(file_path) times.append(time_microseconds) engine_index = index_from_element(engine_label,engine_counts) engine_nice = engine_counts_nice[engine_index] data[engine_nice] = times # Main function to iterate over files and create plots for the new benchmark def main(): folder_path = "benchmark-results/mtsubmit-bench/" # Replace with the actual path to your folder for engine_label in engine_counts: mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts] plot_mt_graph(mt_file_paths, engine_label) df = pd.DataFrame(data) dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label) sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis") plt.savefig(os.path.join(folder_path, "plot-cost-mtsubmit.png")) plt.show() if __name__ == "__main__": main()