This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

112 lines
4.4 KiB

import os
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID"
x_label = "Copy Type"
y_label = "Throughput in GiB/s"
var_label = "Configuration"
types = ["intersock-n0ton4-1mib", "internode-n0ton1-1mib", "intersock-n0ton4-1gib", "internode-n0ton1-1gib"]
types_nice = ["Inter-Socket 1MiB", "Inter-Node 1MiB", "Inter-Socket 1GiB", "Inter-Node 1GiB"]
copy_methods = ["dstcopy", "srccopy", "xcopy", "srcoutsidercopy", "dstoutsidercopy", "sockoutsidercopy", "nodeoutsidercopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines", "Engine on SRC-Socket, not SRC-Node", "Engine on DST-Socket, not DST-Node", "Engine on different Socket", "Engine on same Socket"]
title = \
"""Throughput showing impact of Engine Location\n
Copy Operation on DDR with 1 Engine per WQ"""
description = \
"""Throughput showing impact of Engine Location\n
Some Configurations missing as they are not feesible\n
Copy Operation on DDR with 1 Engine per WQ"""
index = [runid, x_label, var_label]
data = []
# loads the measurements from a given file and processes them
# so that they are normalized, meaning that the timings returned
# are nanoseconds per element transfered
def load_time_mesurements(file_path,method_label):
with open(file_path, 'r') as file:
data = json.load(file)
iterations = data["list"][0]["task"]["iterations"]
if method_label == "xcopy":
# xcopy runs on two engines that both copy 1/2 of the entire
# specified size of 1gib, therefore the maximum time between
# these two is going to be the total time for copy
time0 = data["list"][0]["report"]["time"]
time1 = data["list"][1]["report"]["time"]
return {
"total": max(time0["total"],time1["total"]) / iterations,
"combined" : [max(x,y) for x,y in zip(time0["combined"], time1["combined"])],
"submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])],
"submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])],
}
else:
return {
"total": data["list"][0]["report"]["time"]["total"] / iterations,
"combined": data["list"][0]["report"]["time"]["combined"],
"submission": data["list"][0]["report"]["time"]["submission"],
"completion": data["list"][0]["report"]["time"]["completion"]
}
# procceses a single file and appends the desired timings
# to the global data-array, handles multiple runs with a runid
# and ignores if the given file is not found as some
# configurations may not be benchmarked
def create_copy_dataset(file_path, method_label, type_label):
method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index]
type_index = index_from_element(type_label, types)
type_nice = types_nice[type_index]
data_size = 0
if type_label in ["internode-n0ton1-1gib", "intersock-n0ton4-1gib"]: data_size = 1024*1024*1024
elif type_label in ["internode-n0ton1-1mib", "intersock-n0ton4-1mib"]: data_size = 1024 * 1024
else: data_size = 0
try:
run_idx = 0
time = [load_time_mesurements(file_path,method_label)["total"]]
for t in time:
data.append({ runid : run_idx, x_label: type_nice, var_label : method_nice, y_label : calc_throughput(data_size, t)})
run_idx = run_idx + 1
except FileNotFoundError:
return
# loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved
def main():
result_path = "benchmark-results/"
output_path = "benchmark-plots/"
for method_label in copy_methods:
for type_label in types:
file = os.path.join(result_path, f"{method_label}-{type_label}-1e.json")
create_copy_dataset(file, method_label, type_label)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(output_path, "plot-perf-enginelocation.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()