This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

727 lines
26 KiB

#pragma once
#include <iostream>
#include <unordered_map>
#include <shared_mutex>
#include <mutex>
#include <memory>
#include <sched.h>
#include <numa.h>
#include <numaif.h>
#include <dml/dml.hpp>
namespace dml {
inline const std::string StatusCodeToString(const dml::status_code code) {
switch (code) {
case dml::status_code::ok: return "ok";
case dml::status_code::false_predicate: return "false predicate";
case dml::status_code::partial_completion: return "partial completion";
case dml::status_code::nullptr_error: return "nullptr error";
case dml::status_code::bad_size: return "bad size";
case dml::status_code::bad_length: return "bad length";
case dml::status_code::inconsistent_size: return "inconsistent size";
case dml::status_code::dualcast_bad_padding: return "dualcast bad padding";
case dml::status_code::bad_alignment: return "bad alignment";
case dml::status_code::buffers_overlapping: return "buffers overlapping";
case dml::status_code::delta_delta_empty: return "delta delta empty";
case dml::status_code::batch_overflow: return "batch overflow";
case dml::status_code::execution_failed: return "execution failed";
case dml::status_code::unsupported_operation: return "unsupported operation";
case dml::status_code::queue_busy: return "queue busy";
case dml::status_code::error: return "unknown error";
case dml::status_code::config_error: return "config error";
default: return "unhandled error";
}
}
}
namespace dsacache {
class Cache;
/*
* Class Description:
* Holds all required information on one cache entry and is used
* both internally by the Cache and externally by the user.
*
* Important Usage Notes:
* The pointer is only updated in WaitOnCompletion() which
* therefore must be called by the user at some point in order
* to use the cached data. Using this class as T for
* std::shared_ptr<T> is not recommended as references are
* already counted internally.
*
* Cache Lifetime:
* As long as the instance is referenced, the pointer it stores
* is guaranteed to be either nullptr or pointing to a valid copy.
*
* Implementation Detail:
* Performs self-reference counting with a shared atomic integer.
* Therefore on creating a copy the reference count is increased
* and with the destructor it is deacresed. If the last copy is
* destroyed the actual underlying data is freed and all shared
* variables deleted.
*
* Notes on Thread Safety:
* Class is thread safe in any possible state and performs
* reference counting and deallocation itself entirely atomically.
*/
class CacheData {
public:
using dml_handler = dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>>;
private:
// data source and size of the block
uint8_t* src_;
size_t size_;
// global reference counting object
std::atomic<int32_t>* active_;
// global cache-location pointer
std::atomic<uint8_t*>* cache_;
// object-local incomplete cache location pointer
// which is only available in the first instance
uint8_t* incomplete_cache_;
// dml handler vector pointer which is only
// available in the first instance
std::unique_ptr<std::vector<dml_handler>> handlers_;
// deallocates the global cache-location
// and invalidates it
void Deallocate();
// checks whether there are at least two
// valid references to this object which
// is done as the cache always has one
// internally to any living instance
bool Active() const;
friend Cache;
public:
CacheData(uint8_t* data, const size_t size);
CacheData(const CacheData& other);
~CacheData();
// waits on completion of caching operations
// for this task and is safe to be called in
// any state of the object
void WaitOnCompletion();
// returns the cache data location for this
// instance which is valid as long as the
// instance is alive - !!! this may also
// yield a nullptr !!!
uint8_t* GetDataLocation() const;
};
/*
* Class Description:
* Class will handle access to data through internal copies.
* These are obtained via work submission to the Intel DSA which takes
* care of asynchronously duplicating the data. The user will define
* where these copies lie and which system nodes will perform the copy.
* This is done through policy functions set during initialization.
*
* Placement Policy:
* The Placement Policy Function decides on which node a particular
* entry is to be placed, given the current executing node and the
* data source node and data size. This in turn means that for one
* datum, multiple cached copies may exist at one time.
*
* Cache Lifetime:
* When accessing the cache, a CacheData-object will be returned.
* As long as this object lives, the pointer which it holds is
* guaranteed to be either nullptr or a valid copy. When destroyed
* the entry is marked for deletion which is only carried out
* when system memory pressure drives an automated cache flush.
*
* Restrictions:
* - Overlapping Pointers may lead to undefined behaviour during
* manual cache invalidation which should not be used if you
* intend to have these types of pointers
* - Cache Invalidation may only be performed manually and gives
* no ordering guarantees. Therefore, it is the users responsibility
* to ensure that results after invalidation have been generated
* using the latest state of data. The cache is best suited
* to static data.
*
* Notes on Thread Safety:
* - Cache is completely thread-safe after initialization
* - CacheData-class will handle deallocation of data itself by
* performing self-reference-counting atomically and only
* deallocating if the last reference is destroyed
* - The internal cache state has one lock which is either
* acquired shared for reading the state (upon accessing an already
* cached element) or unique (accessing a new element, flushing, invalidating)
* - Waiting on copy completion is done over an atomic-wait in copies
* of the original CacheData-instance
* - Overall this class may experience performance issues due to the use
* of locking (in any configuration), lock contention (worsens with higher
* core count, node count and utilization) and atomics (worse in the same
* situations as lock contention)
*
* Improving Performance:
* When data is never shared between threads or memory size for the cache is
* not an issue you may consider having one Cache-instance per thread and removing
* the lock in Cache and modifying the reference counting and waiting mechanisms
* of CacheData accordingly (although this is high effort and will yield little due
* to the atomics not being shared among cores/nodes).
* Otherwise, one Cache-instance per node could also be considered. This will allow
* the placement policy function to be barebones and reduces the lock contention and
* synchronization impact of the atomic variables.
*/
class Cache {
public:
// cache policy is defined as a type here to allow flexible usage of the cacher
// given a numa destination node (where the data will be needed), the numa source
// node (current location of the data) and the data size, this function should
// return optimal cache placement
// dst node and returned value can differ if the system, for example, has HBM
// attached accessible directly to node n under a different node id m
typedef int (CachePolicy)(const int numa_dst_node, const int numa_src_node, const size_t data_size);
// copy policy specifies the copy-executing nodes for a given task
// which allows flexibility in assignment for optimizing raw throughput
// or choosing a conservative usage policy
typedef std::vector<int> (CopyPolicy)(const int numa_dst_node, const int numa_src_node, const size_t data_size);
private:
// mutex for accessing the cache state map
std::shared_mutex cache_mutex_;
// map from [dst-numa-node,map2]
// map2 from [data-ptr,cache-structure]
std::unordered_map<uint8_t, std::unordered_map<uint8_t*, CacheData>> cache_state_;
CachePolicy* cache_policy_function_ = nullptr;
CopyPolicy* copy_policy_function_ = nullptr;
// function used to submit a copy task on a specific node to the dml
// engine on that node - will change the current threads node assignment
// to achieve this so take care to restore this
dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>> ExecuteCopy(
const uint8_t* src, uint8_t* dst, const size_t size, const int node
) const;
// allocates the required memory on the destination node
// and then submits task to the dml library for processing
// and attaches the handlers to the cache data structure
void SubmitTask(CacheData* task, const int dst_node, const int src_node);
// querries the policy functions for the given data and size
// to obtain destination cache node, also returns the datas
// source node for further usage
// output may depend on the calling threads node assignment
// as this is set as the "optimal placement" node
void GetCacheNode(uint8_t* src, const size_t size, int* OUT_DST_NODE, int* OUT_SRC_NODE) const;
// allocates memory of size "size" on the numa node "node"
// and returns nullptr if this is not possible, also may
// try to flush the cache of the requested node to
// alleviate encountered shortage
uint8_t* AllocOnNode(const size_t size, const int node);
// checks whether the cache contains an entry for
// the given data in the given memory node and
// returns it, otherwise returns nullptr
std::unique_ptr<CacheData> GetFromCache(uint8_t* src, const size_t size, const int dst_node);
public:
Cache() = default;
Cache(const Cache& other) = delete;
// initializes the cache with the two policy functions
// only after this is it safe to use in a threaded environment
void Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function);
// function to perform data access through the cache
std::unique_ptr<CacheData> Access(uint8_t* data, const size_t size);
// flushes the cache of inactive entries
// if node is -1 then the whole cache is
// checked and otherwise the specified
// node - no checks on node validity
void Flush(const int node = -1);
// forces out all entries from the
// cache and therefore will also "forget"
// still-in-use entries, these will still
// be properly deleted, but the cache
// will be fresh - use for testing
void Clear();
void Invalidate(uint8_t* data);
};
}
inline void dsacache::Cache::Clear() {
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
cache_state_.clear();
Init(cache_policy_function_, copy_policy_function_);
}
inline void dsacache::Cache::Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function) {
cache_policy_function_ = cache_policy_function;
copy_policy_function_ = copy_policy_function;
// initialize numa library
numa_available();
// obtain all available nodes
// and those we may allocate
// memory on
const int nodes_max = numa_num_configured_nodes();
const bitmask* valid_nodes = numa_get_mems_allowed();
// prepare the cache state with entries
// for all given nodes
for (int node = 0; node < nodes_max; node++) {
if (numa_bitmask_isbitset(valid_nodes, node)) {
cache_state_.insert({node,{}});
}
}
}
inline std::unique_ptr<dsacache::CacheData> dsacache::Cache::Access(uint8_t* data, const size_t size) {
// get destination numa node for the cache
int dst_node = -1;
int src_node = -1;
GetCacheNode(data, size, &dst_node, &src_node);
// TODO: at this point it could be beneficial to check whether
// TODO: the given destination node is present as an entry
// TODO: in the cache state to see if it is valid
// check whether the data is already cached
std::unique_ptr<CacheData> task = GetFromCache(data, size, dst_node);
if (task != nullptr) {
return std::move(task);
}
// at this point the requested data is not present in cache
// and we create a caching task for it
task = std::make_unique<CacheData>(data, size);
{
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
const auto state = cache_state_[dst_node].emplace(task->src_, *task);
// if state.second is false then no insertion took place
// which means that concurrently whith this thread
// some other thread must have accessed the same
// resource in which case we return the other
// threads data cache structure
if (!state.second) {
std::cout << "[!] Found another cache instance for 0x" << std::hex << (uint64_t)task->src_ << std::dec << std::endl;
return std::move(std::make_unique<CacheData>(state.first->second));
}
}
SubmitTask(task.get(), dst_node, src_node);
return std::move(task);
}
inline uint8_t* dsacache::Cache::AllocOnNode(const size_t size, const int node) {
// allocate data on this node and flush the unused parts of the
// cache if the operation fails and retry once
// TODO: smarter flush strategy could keep some stuff cached
// check currently free memory to see if the data fits
long long int free_space = 0;
numa_node_size64(node, &free_space);
if (free_space < size) {
std::cout << "[!] Memory shortage when allocating " << size << "B on node " << node << std::endl;
// dst node lacks memory space so we flush the cache for this
// node hoping to free enough currently unused entries to make
// the second allocation attempt successful
Flush(node);
// re-test by getting the free space and checking again
numa_node_size64(node, &free_space);
if (free_space < size) {
std::cout << "[x] Memory shortage after flush when allocating " << size << "B on node " << node << std::endl;
return nullptr;
}
}
uint8_t* dst = reinterpret_cast<uint8_t*>(numa_alloc_onnode(size, node));
if (dst == nullptr) {
std::cout << "[x] Allocation try failed for " << size << "B on node " << node << std::endl;
return nullptr;
}
return dst;
}
inline void dsacache::Cache::SubmitTask(CacheData* task, const int dst_node, const int src_node) {
uint8_t* dst = AllocOnNode(task->size_, dst_node);
if (dst == nullptr) {
std::cout << "[x] Allocation failed so we can not cache" << std::endl;
return;
}
task->incomplete_cache_ = dst;
// querry copy policy function for the nodes to use for the copy
const std::vector<int> executing_nodes = copy_policy_function_(dst_node, src_node, task->size_);
const size_t task_count = executing_nodes.size();
// each task will copy one fair part of the total size
// and in case the total size is not a factor of the
// given task count the last node must copy the remainder
const size_t size = task->size_ / task_count;
const size_t last_size = size + task->size_ % task_count;
// save the current numa node mask to restore later
// as executing the copy task will place this thread
// on a different node
bitmask* nodemask = numa_get_run_node_mask();
for (uint32_t i = 0; i < task_count; i++) {
const size_t local_size = i + 1 == task_count ? size : last_size;
const size_t local_offset = i * size;
const uint8_t* local_src = task->src_ + local_offset;
uint8_t* local_dst = dst + local_offset;
task->handlers_->emplace_back(ExecuteCopy(local_src, local_dst, local_size, executing_nodes[i]));
}
// restore the previous nodemask
numa_run_on_node_mask(nodemask);
numa_free_nodemask(nodemask);
}
inline dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>> dsacache::Cache::ExecuteCopy(
const uint8_t* src, uint8_t* dst, const size_t size, const int node
) const {
dml::const_data_view srcv = dml::make_view(src, size);
dml::data_view dstv = dml::make_view(dst, size);
numa_run_on_node(node);
return dml::submit<dml::automatic>(dml::mem_copy.block_on_fault(), srcv, dstv);
}
inline void dsacache::Cache::GetCacheNode(uint8_t* src, const size_t size, int* OUT_DST_NODE, int* OUT_SRC_NODE) const {
// obtain numa node of current thread to determine where the data is needed
const int current_cpu = sched_getcpu();
const int current_node = numa_node_of_cpu(current_cpu);
// obtain node that the given data pointer is allocated on
*OUT_SRC_NODE = -1;
get_mempolicy(OUT_SRC_NODE, NULL, 0, (void*)src, MPOL_F_NODE | MPOL_F_ADDR);
// querry cache policy function for the destination numa node
*OUT_DST_NODE = cache_policy_function_(current_node, *OUT_SRC_NODE, size);
}
inline void dsacache::Cache::Flush(const int node) {
// this lambda is used because below we have two code paths that
// flush nodes, either one single or all successively
const auto FlushNode = [](std::unordered_map<uint8_t*,CacheData>& map) {
// begin at the front of the map
auto it = map.begin();
// loop until we reach the end of the map
while (it != map.end()) {
// if the iterator points to an inactive element
// then we may erase it
if (it->second.Active() == false) {
// erase the iterator from the map
map.erase(it);
// as the erasure invalidated out iterator
// we must start at the beginning again
it = map.begin();
}
else {
// if element is active just move over to the next one
it++;
}
}
};
{
// we require exclusive lock as we modify the cache state
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
// node == -1 means that cache on all nodes should be flushed
if (node == -1) {
for (auto& nc : cache_state_) {
FlushNode(nc.second);
}
}
else {
FlushNode(cache_state_[node]);
}
}
}
inline std::unique_ptr<dsacache::CacheData> dsacache::Cache::GetFromCache(uint8_t* src, const size_t size, const int dst_node) {
// the best situation is if this data is already cached
// which we check in an unnamed block in which the cache
// is locked for reading to prevent another thread
// from marking the element we may find as unused and
// clearing it
// lock the cache state in shared-mode because we read
std::shared_lock<std::shared_mutex> lock(cache_mutex_);
// search for the data in our cache state structure at the given node
const auto search = cache_state_[dst_node].find(src);
// if the data is in our structure we continue
if (search != cache_state_[dst_node].end()) {
// now check whether the sizes match
if (search->second.size_ >= size) {
// return a unique copy of the entry which uses the object
// lifetime and destructor to safely handle deallocation
return std::move(std::make_unique<CacheData>(search->second));
}
else {
// if the sizes missmatch then we clear the current entry from cache
// which will cause its deletion only after the last possible outside
// reference is also destroyed
cache_state_[dst_node].erase(search);
}
}
return nullptr;
}
void dsacache::Cache::Invalidate(uint8_t* data) {
// as the cache is modified we must obtain a unique writers lock
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
// loop through all per-node-caches available
for (auto node : cache_state_) {
// search for an entry for the given data pointer
auto search = node.second.find(data);
if (search != node.second.end()) {
// if the data is represented in-cache
// then it will be erased to re-trigger
// caching on next access
node.second.erase(search);
}
}
}
inline dsacache::CacheData::CacheData(uint8_t* data, const size_t size) {
src_ = data;
size_ = size;
active_ = new std::atomic<int32_t>(1);
cache_ = new std::atomic<uint8_t*>();
incomplete_cache_ = nullptr;
handlers_ = std::make_unique<std::vector<dml_handler>>();
}
inline dsacache::CacheData::CacheData(const dsacache::CacheData& other) {
// we copy the ptr to the global atomic reference counter
// and increase the amount of active references
active_ = other.active_;
const int current_active = active_->fetch_add(1);
// source and size will be copied too
// as well as the reference to the global
// atomic cache pointer
src_ = other.src_;
size_ = other.size_;
cache_ = other.cache_;
// incomplete cache and handlers will not
// be copied because only the first instance
// will wait on the completion of handlers
incomplete_cache_ = nullptr;
handlers_ = nullptr;
}
inline dsacache::CacheData::~CacheData() {
// if this is the first instance of this cache structure
// and it has not been waited on and is now being destroyed
// we must wait on completion here to ensure the cache
// remains in a valid state
if (handlers_ != nullptr) {
WaitOnCompletion();
}
// due to fetch_sub returning the preivously held value
// we must subtract one locally to get the current value
const int32_t v = active_->fetch_sub(1) - 1;
// if the returned value is zero or lower
// then we must execute proper deletion
// as this was the last reference
if (v <= 0) {
Deallocate();
delete active_;
delete cache_;
}
}
inline void dsacache::CacheData::Deallocate() {
// although deallocate should only be called from
// a safe context to do so, it can not hurt to
// defensively perform the operation atomically
uint8_t* cache_local = cache_->exchange(nullptr);
if (cache_local != nullptr) numa_free(cache_local, size_);
// if the cache was never waited for then incomplete_cache_
// may still contain a valid pointer which has to be freed
if (incomplete_cache_ != nullptr) numa_free(incomplete_cache_, size_);
}
inline uint8_t* dsacache::CacheData::GetDataLocation() const {
return cache_->load();
}
inline bool dsacache::CacheData::Active() const {
// this entry is active if more than one
// reference exists to it, as the Cache
// will always keep one internally until
// the entry is cleared from cache
return active_->load() > 1;
}
inline void dsacache::CacheData::WaitOnCompletion() {
// the cache data entry can be in two states
// either it is the original one which has not
// been waited for in which case the handlers
// are non-null or it is not
if (handlers_ == nullptr) {
// when no handlers are attached to this cache entry we wait on a
// value change for the cache structure from nullptr to non-null
// which will either go through immediately if the cache is valid
// already or wait until the handler-owning thread notifies us
cache_->wait(nullptr);
}
else {
// when the handlers are non-null there are some DSA task handlers
// available on which we must wait here
// abort is set if any operation encountered an error
bool abort = false;
for (auto& handler : *handlers_) {
auto result = handler.get();
if (result.status != dml::status_code::ok) {
std::cerr << "[x] Encountered bad status code for operation: " << dml::StatusCodeToString(result.status) << std::endl;
// if one of the copy tasks failed we abort the whole task
// after all operations are completed on it
abort = true;
}
}
// the handlers are cleared after all have completed
handlers_ = nullptr;
// now we act depending on whether an abort has been
// called for which signals operation incomplete
if (abort) {
// store nullptr in the cache location
cache_->store(nullptr);
// then free the now incomplete cache
// TODO: it would be possible to salvage the
// TODO: operation at this point but this
// TODO: is quite complicated so we just abort
numa_free(incomplete_cache_, size_);
}
else {
// incomplete cache is now safe to use and therefore we
// swap it with the global cache state of this entry
// and notify potentially waiting threads
cache_->store(incomplete_cache_);
}
// as a last step all waiting threads must
// be notified (copies of this will wait on value
// change of the cache) and the incomplete cache
// is cleared to nullptr as it is not incomplete
cache_->notify_all();
incomplete_cache_ = nullptr;
}
}