This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

96 lines
3.2 KiB

import os
import json
import pandas as pd
from pandas.core.ops import methods
from typing import List
import seaborn as sns
import matplotlib.pyplot as plt
runid = "Run ID"
x_label = "Size of Submitted Task"
y_label = "Throughput in GiB/s"
var_label = "Submission Type"
sizes = ["1kib", "4kib", "1mib", "1gib"]
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"]
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"]
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"]
title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-6
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
def load_and_process_submit_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
time = { "combined" : data["list"][0]["report"]["time"]["combined"], "submit" : data["list"][0]["report"]["time"]["submit"], "complete" : data["list"][0]["report"]["time"]["complete"]}
return time
# Function to plot the graph for the new benchmark
def plot_submit_graph(file_paths, type_label):
times = []
type_index = index_from_element(type_label,types)
type_nice = types_nice[type_index]
idx = 0
for file_path in file_paths:
time = load_and_process_submit_json(file_path)
times.append(time["combined"])
idx = idx + 1
# Adjust time measurements based on type
# which can contain multiple submissions
if type_label in {"bs10", "ms10"}:
times = [[t / 10 for t in time] for time in times]
elif type_label in {"ms50", "bs50"}:
times = [[t / 50 for t in time] for time in times]
times[0] = [t / 1 for t in times[0]]
times[1] = [t / 4 for t in times[1]]
times[2] = [t / (1024) for t in times[2]]
times[3] = [t / (1024*1024) for t in times[3]]
throughput = [[calc_throughput(1024,time) for time in t] for t in times]
idx = 0
for run_set in throughput:
run_idx = 0
for run in run_set:
data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]})
run_idx = run_idx + 1
idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder
for type_label in types:
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes]
plot_submit_graph(file_paths, type_label)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
print(df)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=df, kind='bar', height=5, aspect=1, palette="viridis", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()