This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

419 lines
14 KiB

#pragma once
#include <iostream>
#include <atomic>
#include <vector>
#include <thread>
#include <unordered_map>
#include <shared_mutex>
#include <mutex>
#include <memory>
#include <semaphore.h>
#include <sched.h>
#include <numa.h>
#include <numaif.h>
#include <dml/dml.hpp>
namespace offcache {
// execution policy selects in which way the data is supposed to be cached
// and returned with the following behaviour is guaranteed in addition to the
// returned value being valid:
// Immediate: return as fast as possible
// may return cached data, can return data in RAM
// will trigger caching of the data provided
// ImmediateNoCache: return as fast as possible and never trigger caching
// same as Immediate but will not trigger caching
// Relaxed: no rapid return needed, take time
// will trigger caching and may only return
// once the caching is successful but can still
// provide data in RAM
enum class ExecutionPolicy {
Relaxed, Immediate, ImmediateNoCache
};
class Cache;
// the cache task structure will be used to submit and
// control a cache element, while providing source pointer
// and size in bytes for submission
//
// then the submitting thread may wait on the atomic "result"
// which will be notified by the cache worker upon processing
// after which the atomic-bool-ptr active will also become valid
class CacheData {
public:
using dml_handler = dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>>;
private:
uint8_t* src_;
size_t size_;
std::atomic<int32_t>* active_;
protected:
std::atomic<uint8_t*>* cache_;
uint8_t* incomplete_cache_;
std::unique_ptr<std::vector<dml_handler>> handlers_;
friend Cache;
public:
CacheData(uint8_t* data, const size_t size);
CacheData(const CacheData& other);
~CacheData();
void Deallocate();
void WaitOnCompletion();
uint8_t* GetDataLocation() const;
bool Active() const;
};
// singleton which holds the cache workers
// and is the place where work will be submited
class Cache {
public:
// cache policy is defined as a type here to allow flexible usage of the cacher
// given a numa destination node (where the data will be needed), the numa source
// node (current location of the data) and the data size, this function should
// return optimal cache placement
// dst node and returned value can differ if the system, for example, has HBM
// attached accessible directly to node n under a different node id m
typedef int (CachePolicy)(const int numa_dst_node, const int numa_src_node, const size_t data_size);
// copy policy specifies the copy-executing nodes for a given task
// which allows flexibility in assignment for optimizing raw throughput
// or choosing a conservative usage policy
typedef std::vector<int> (CopyPolicy)(const int numa_dst_node, const int numa_src_node);
private:
std::shared_mutex cache_mutex_;
std::unordered_map<uint8_t*, CacheData> cache_state_;
CachePolicy* cache_policy_function_ = nullptr;
CopyPolicy* copy_policy_function_ = nullptr;
dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>> ExecuteCopy(const uint8_t* src, uint8_t* dst, const size_t size, const int node) const;
void SubmitTask(CacheData* task);
public:
void Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function);
// function to perform data access through the cache
// behaviour depends on the chosen execution policy
// Immediate and ImmediateNoCache return a cache task
// with guaranteed-valid result value where Relaxed
// policy does not come with this guarantee.
std::unique_ptr<CacheData> Access(uint8_t* data, const size_t size, const ExecutionPolicy policy);
void Flush();
};
}
inline void offcache::Cache::Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function) {
cache_policy_function_ = cache_policy_function;
copy_policy_function_ = copy_policy_function;
// initialize numa library
numa_available();
std::cout << "[-] Cache Initialized" << std::endl;
}
inline std::unique_ptr<offcache::CacheData> offcache::Cache::Access(uint8_t* data, const size_t size, const ExecutionPolicy policy) {
// the best situation is if this data is already cached
// which we check in an unnamed block in which the cache
// is locked for reading to prevent another thread
// from marking the element we may find as unused and
// clearing it
{
std::shared_lock<std::shared_mutex> lock(cache_mutex_);
const auto search = cache_state_.find(data);
if (search != cache_state_.end()) {
if (search->second.size_ == size) {
search->second.active_->store(true);
std::cout << "[+] Found Cached version for 0x" << std::hex << (uint64_t)data << std::dec << std::endl;
return std::move(std::make_unique<CacheData>(search->second));
}
else {
std::cout << "[!] Found Cached version with size missmatch for 0x" << std::hex << (uint64_t)data << std::dec << std::endl;
cache_state_.erase(search);
}
}
}
// at this point the requested data is not present in cache
// and we create a caching task for it
auto task = std::make_unique<CacheData>(data, size);
if (policy == ExecutionPolicy::Immediate) {
// in intermediate mode the returned task
// object is guaranteed to be valid and therefore
// its resulting location must be validated
// after which we submit the task
// maybe_result is then set by submit
task->cache_->store(data);
SubmitTask(task.get());
return std::move(task);
}
else if (policy == ExecutionPolicy::ImmediateNoCache) {
// for immediatenocache we just validate
// the generated task and return it
// we must also set maybe_result in case
// someone waits on this
task->cache_->store(data);
task->incomplete_cache_ = data;
return std::move(task);
}
else if (policy == ExecutionPolicy::Relaxed) {
// for relaxed no valid task must be returned
// and therefore we just submit and then give
// the possible invalid task back with only
// maybe_result set by submission
SubmitTask(task.get());
return std::move(task);
}
else {
// this should not be reached
}
}
inline void offcache::Cache::SubmitTask(CacheData* task) {
// obtain numa node of current thread to determine where the data is needed
const int current_cpu = sched_getcpu();
const int current_node = numa_node_of_cpu(current_cpu);
// obtain node that the given data pointer is allocated on
int data_node = -1;
get_mempolicy(&data_node, NULL, 0, (void*)task->src_, MPOL_F_NODE | MPOL_F_ADDR);
// querry cache policy function for the destination numa node
const int dst_node = cache_policy_function_(current_node, data_node, task->size_);
std::cout << "[+] Allocating " << task->size_ << "B on node " << dst_node << " for " << std::hex << (uint64_t)task->src_ << std::dec << std::endl;
// allocate data on this node and flush the unused parts of the
// cache if the operation fails and retry once
// TODO: smarter flush strategy could keep some stuff cached
uint8_t* dst = reinterpret_cast<uint8_t*>(numa_alloc_onnode(task->size_, dst_node));
if (dst == nullptr) {
std::cout << "[!] First allocation try failed for " << task->size_ << "B on node " << dst_node << std::endl;
Flush();
dst = reinterpret_cast<uint8_t*>(numa_alloc_onnode(task->size_, dst_node));
if (dst == nullptr) {
std::cout << "[x] Second allocation try failed for " << task->size_ << "B on node " << dst_node << std::endl;
return;
}
}
task->incomplete_cache_ = dst;
// querry copy policy function for the nodes to use for the copy
const std::vector<int> executing_nodes = copy_policy_function_(dst_node, data_node);
const size_t task_count = executing_nodes.size();
// each task will copy one fair part of the total size
// and in case the total size is not a factor of the
// given task count the last node must copy the remainder
const size_t size = task->size_ / task_count;
const size_t last_size = size + task->size_ % task_count;
// save the current numa node mask to restore later
// as executing the copy task will place this thread
// on a different node
bitmask* nodemask = numa_get_run_node_mask();
for (uint32_t i = 0; i < task_count; i++) {
const size_t local_size = i + 1 == task_count ? size : last_size;
const size_t local_offset = i * size;
const uint8_t* local_src = task->src_ + local_offset;
uint8_t* local_dst = dst + local_offset;
task->handlers_->emplace_back(ExecuteCopy(local_src, local_dst, local_size, executing_nodes[i]));
}
// only at this point may the task be added to the control structure
// because adding it earlier could cause it to be returned for an
// access request while the handler-vector is not fully populated
// which could cause the wait-function to return prematurely
// TODO: this can be optimized because the abort is quite expensive
{
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
const auto state = cache_state_.insert({task->src_, *task});
// if state.second is false then no insertion took place
// which means that concurrently whith this thread
// some other thread must have accessed the same
// resource in which case we must perform an abort
// TODO: abort is not the only way to handle this situation
if (!state.second) {
std::cout << "[x] Found another cache instance for 0x" << std::hex << (uint64_t)task->src_ << std::dec << std::endl;
// first wait on all copy operations to be completed
task->WaitOnCompletion();
// abort by doing the following steps
// (1) free the allocated memory, (2) remove the "maybe result" as
// we will not run the caching operation, (3) clear the sub tasks
// for the very same reason, (4) set the result to the RAM-location
numa_free(dst, task->size_);
task->incomplete_cache_ = nullptr;
task->cache_->store(task->src_);
std::cout << "[-] Abort completed for 0x" << std::hex << (uint64_t)task->src_ << std::dec << std::endl;
return;
}
}
// restore the previous nodemask
numa_run_on_node_mask(nodemask);
}
inline dml::handler<dml::mem_copy_operation, std::allocator<uint8_t>> offcache::Cache::ExecuteCopy(const uint8_t* src, uint8_t* dst, const size_t size, const int node) const {
dml::const_data_view srcv = dml::make_view(src, size);
dml::data_view dstv = dml::make_view(dst, size);
numa_run_on_node(node);
return dml::submit<dml::automatic>(dml::mem_copy.block_on_fault(), srcv, dstv);
}
inline void offcache::CacheData::WaitOnCompletion() {
if (handlers_ == nullptr) {
std::cout << "[-] Waiting on cache-var-update for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
cache_->wait(nullptr);
std::cout << "[+] Finished waiting on cache-var-update for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
}
else {
std::cout << "[-] Waiting on handlers for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
for (auto& handler : *handlers_) {
auto result = handler.get();
// TODO: handle the returned status code
}
handlers_ = nullptr;
std::cout << "[+] Finished waiting on handlers for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
cache_->store(incomplete_cache_);
cache_->notify_all();
}
}
offcache::CacheData::CacheData(uint8_t* data, const size_t size) {
std::cout << "[-] New CacheData 0x" << std::hex << (uint64_t)data << std::dec << std::endl;
src_ = data;
size_ = size;
active_ = new std::atomic<int32_t>();
cache_ = new std::atomic<uint8_t*>();
incomplete_cache_ = nullptr;
handlers_ = std::make_unique<std::vector<dml_handler>>();
}
offcache::CacheData::CacheData(const offcache::CacheData& other) {
std::cout << "[-] Copy Created for CacheData 0x" << std::hex << (uint64_t)other.src_ << std::dec << std::endl;
src_ = other.src_;
size_ = other.size_;
cache_ = other.cache_;
active_ = other.active_;
incomplete_cache_ = nullptr;
handlers_ = nullptr;
active_->fetch_add(1);
}
offcache::CacheData::~CacheData() {
std::cout << "[-] Destructor for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
const int32_t v = active_->fetch_sub(1);
// if the returned value is non-positive
// then we must execute proper deletion
// as this was the last reference
if (v <= 0) {
std::cout << "[!] Full Destructor for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
Deallocate();
delete active_;
delete cache_;
}
}
void offcache::CacheData::Deallocate() {
std::cout << "[!] Deallocating for CacheData 0x" << std::hex << (uint64_t)src_ << std::dec << std::endl;
numa_free(cache_, size_);
cache_ = nullptr;
incomplete_cache_ = nullptr;
}
uint8_t *offcache::CacheData::GetDataLocation() const {
return cache_->load();
}
bool offcache::CacheData::Active() const {
return active_->load() > 0;
}
inline void offcache::Cache::Flush() {
std::cout << "[-] Flushing Cache" << std::endl;
// TODO: there is a better way to implement this flush
{
std::unique_lock<std::shared_mutex> lock(cache_mutex_);
auto it = cache_state_.begin();
while (it != cache_state_.end()) {
if (it->second.Active() == false) {
cache_state_.erase(it);
it = cache_state_.begin();
}
else {
it++;
}
}
}
}