This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

147 lines
5.2 KiB

#pragma once
#include <atomic>
#include <vector>
#include <thread>
#include <unordered_map>
#include <semaphore.h>
#include <numa.h>
#include <dml/dml.hpp>
namespace offcache {
// execution policy selects in which way the data is supposed to be cached
// and returned with the following behaviour is guaranteed in addition to the
// returned value being valid:
// Immediate: return as fast as possible
// may return cached data, can return data in RAM
// will trigger caching of the data provided
// ImmediateNoCache: return as fast as possible and never trigger caching
// same as Immediate but will not trigger caching
// Relaxed: no rapid return needed, take time
// will trigger caching and may only return
// once the caching is successful but can still
// provide data in RAM
enum class ExecutionPolicy {
Relaxed, Immediate, ImmediateNoCache
};
struct WorkerTask {
uint8_t* src_;
uint8_t* dst_;
size_t size_;
std::atomic<bool> completed_ { false };
};
// the cache task structure will be used to submit and
// control a cache element, while providing source pointer
// and size in bytes for submission
//
// then the submitting thread may wait on the atomic "result"
// which will be notified by the cache worker upon processing
// after which the atomic-bool-ptr active will also become valid
struct CacheTask {
uint8_t* data_;
size_t size_;
ExecutionPolicy policy_;
uint8_t* result_;
std::atomic<bool> active_;
std::vector<WorkerTask> sub_tasks_;
};
// worker class, one for each numa node
// discovers its node configuration on startup
// and keeps track of available memory
class CacheWorker {
public:
uint8_t numa_node_ = 0;
// this is the mailbox of the worker to which a new task
// may be submitted by exchanging nullptr with a valid one
// and notifying on the atomic after which ownership
// of the CacheTask structure is transferred to the worker
std::atomic<WorkerTask*>* task_slot_ = nullptr;
static void run(CacheWorker* this_);
};
// singleton which holds the cache workers
// and is the place where work will be submited
class CacheCoordinator {
public:
// cache policy is defined as a type here to allow flexible usage of the cacher
// given a numa destination node (where the data will be needed), the numa source
// node (current location of the data) and the data size, this function should
// return optimal cache placement
// dst node and returned value can differ if the system, for example, has HBM
// attached accessible directly to node n under a different node id m
typedef uint8_t (CachePolicy)(const uint8_t numa_dst_node, const uint8_t numa_src_node, const size_t data_size);
// copy policy specifies the copy-executing nodes for a given task
// which allows flexibility in assignment for optimizing raw throughput
// or choosing a conservative usage policy
typedef std::vector<uint8_t> (CopyPolicy)(const uint8_t numa_dst_node, const uint8_t numa_src_node);
private:
std::unordered_map<uint8_t, CacheWorker> workers_;
std::unordered_map<uint8_t*, CacheTask*> cache_state_;
CachePolicy* cache_policy_function_ = nullptr;
CopyPolicy* copy_policy_function_ = nullptr;
public:
void Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function);
// submits the given task and takes ownership of the pointer
void SubmitTask(CacheTask* task, const ExecutionPolicy policy) const;
// waits upon completion of caching
// returns the location of the data
static uint8_t* WaitOnCompletion(CacheTask* task);
// invalidates the given pointer
static void SignalDataUnused(CacheTask* task);
};
}
void offcache::CacheWorker::run(CacheWorker* this_) {
}
void offcache::CacheCoordinator::Init(CachePolicy* cache_policy_function, CopyPolicy* copy_policy_function) {
cache_policy_function_ = cache_policy_function;
copy_policy_function_ = copy_policy_function;
// initialize numa library
numa_available();
const uint8_t nodes_max = numa_num_configured_nodes();
const uint8_t valid_nodes = numa_get_mems_allowed();
for (uint8_t node = 0; node < nodes_max; node++) {
if (numa_bitmask_isbitset(valid_nodes, node)) {
workers_.insert({ node, CacheWorker() });
workers_[node].numa_node_ = node;
std::thread t (CacheWorker::run, &workers_[node]);
t.detach();
}
}
}
void offcache::CacheCoordinator::SubmitTask(CacheTask* task, const ExecutionPolicy policy) const {
}
uint8_t* offcache::CacheCoordinator::WaitOnCompletion(CacheTask* task) {
while (!task->sub_tasks_.empty()) {
task->sub_tasks_.back().completed_.wait(false);
task->sub_tasks_.pop_back();
}
}
void offcache::CacheCoordinator::SignalDataUnused(CacheTask* task) {
task->active_.store(false);
}