You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.3 KiB
92 lines
3.3 KiB
import os
|
|
import json
|
|
import pandas as pd
|
|
from itertools import chain
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
|
|
runid = "Run ID"
|
|
x_label = "Thread Count"
|
|
y_label = "Throughput in GiB/s LogScale"
|
|
var_label = "Thread Counts"
|
|
thread_counts = ["1t", "2t", "4t", "8t", "12t"]
|
|
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"]
|
|
engine_counts = ["1mib-1e", "1mib-4e", "1gib-1e", "1gib-4e"]
|
|
engine_counts_nice = ["1 E/WQ and Tasksize 1 MiB", "4 E/WQ and Tasksize 1 MiB", "1 E/WQ and Tasksize 1 GiB", "4 E/WQ and Tasksize 1 GiB"]
|
|
title = "Per-Thread Throughput - 120 Copy Operations split on Threads Intra-Node on DDR with Size 1 MiB"
|
|
|
|
index = [runid, x_label, var_label]
|
|
data = []
|
|
|
|
def calc_throughput(size_bytes,time_ns):
|
|
time_seconds = time_ns * 1e-9
|
|
size_gib = size_bytes / (1024 ** 3)
|
|
throughput_gibs = size_gib / time_seconds
|
|
return throughput_gibs
|
|
|
|
|
|
def index_from_element(value,array):
|
|
for (idx,val) in enumerate(array):
|
|
if val == value: return idx
|
|
return 0
|
|
|
|
|
|
def load_time_mesurements(file_path):
|
|
with open(file_path, 'r') as file:
|
|
data = json.load(file)
|
|
|
|
count = data["count"]
|
|
iterations = data["list"][0]["task"]["iterations"]
|
|
|
|
# work queue size is 120 which is split over all available threads
|
|
# therefore we divide the result by 120/n_threads to get the per-element speed
|
|
|
|
return {
|
|
"total" : sum([x / (iterations * (120 / count)) for x in list(chain(*[data["list"][i]["report"]["time"]["total"] for i in range(count)]))]),
|
|
"combined" : [x / (120 / count) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))],
|
|
"submission" : [x / (120 / count) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))],
|
|
"completion" : [x / (120 / count) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))]
|
|
}
|
|
|
|
def process_file_to_dataset(file_path, engine_label, thread_count):
|
|
engine_index = index_from_element(engine_label,engine_counts)
|
|
engine_nice = engine_counts_nice[engine_index]
|
|
threadc_index = index_from_element(thread_count, thread_counts)
|
|
thread_count_nice = thread_counts_nice[threadc_index]
|
|
data_size = 0
|
|
|
|
if engine_label in ["1gib-1e", "1gib-4e"]:
|
|
data_size = 1024*1024*1024
|
|
else:
|
|
data_size = 1024*1024
|
|
|
|
try:
|
|
time = load_time_mesurements(file_path)["total"]
|
|
run_idx = 0
|
|
for t in time:
|
|
data.append({ runid : run_idx, x_label: thread_count_nice, var_label : engine_nice, y_label : calc_throughput(data_size, t)})
|
|
run_idx = run_idx + 1
|
|
except FileNotFoundError:
|
|
return
|
|
|
|
|
|
def main():
|
|
folder_path = "benchmark-results/"
|
|
|
|
for engine_label in engine_counts:
|
|
for thread_count in thread_counts:
|
|
file = os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json")
|
|
process_file_to_dataset(file, engine_label, thread_count)
|
|
|
|
df = pd.DataFrame(data)
|
|
df.set_index(index, inplace=True)
|
|
|
|
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
|
|
|
|
plt.title(title)
|
|
plt.savefig(os.path.join(folder_path, "plot-perf-mtsubmit.png"), bbox_inches='tight')
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|