This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

95 lines
3.2 KiB

import os
import json
import pandas as pd
from pandas.core.ops import methods
import seaborn as sns
import matplotlib.pyplot as plt
runid = "Run ID"
x_label = "Copy Type"
y_label = "Throughput in GiB/s"
var_label = "Configuration"
types = ["intersock-n0ton4", "internode-n0ton1"]
types_nice = ["Inter-Socket Copy", "Inter-Node Copy"]
copy_methods = ["dstcopy", "srccopy", "xcopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines" ]
title = "Performance of Engine Location - Copy Operation on DDR with Size 1 MiB and 1 Engine per WQ"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
def load_and_process_copy_json(file_path,method_label):
with open(file_path, 'r') as file:
data = json.load(file)
# Extracting time from JSON structure
if method_label == "xcopy":
# For xcopy method, add times from two entries and divide by 3
time0 = data["list"][0]["report"]["time"]
time1 = data["list"][1]["report"]["time"]
return {
"combined" : [sum(x) / 4 for x in zip(time0["combined"], time1["combined"])],
"submission" : [sum(x) / 4 for x in zip(time0["completion"], time1["completion"])],
"completion" : [sum(x) / 4 for x in zip(time0["submission"], time1["submission"])]
}
else:
return data["list"][0]["report"]["time"]
# Function to plot the graph for the new benchmark
def create_copy_dataset(file_paths, method_label):
times = []
method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index]
idx = 0
for file_path in file_paths:
time = load_and_process_copy_json(file_path,method_label)
times.append(time["combined"])
idx = idx + 1
throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times]
idx = 0
for run_set in throughput:
run_idx = 0
for run in run_set:
data.append({ runid : run_idx, x_label: types_nice[idx], var_label : method_nice, y_label : throughput[idx][run_idx]})
run_idx = run_idx + 1
idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/"
for method_label in copy_methods:
copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-1e.json") for type_label in types]
create_copy_dataset(copy_file_paths, method_label)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()