This contains my bachelors thesis and associated tex files, code snippets and maybe more. Topic: Data Movement in Heterogeneous Memories with Intel Data Streaming Accelerator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

101 lines
3.3 KiB

import os
import json
import pandas as pd
from pandas.core.ops import methods
from typing import List
import seaborn as sns
import matplotlib.pyplot as plt
runid = "Run ID"
x_label = "Size of Submitted Task"
y_label = "Throughput in GiB/s"
var_label = "Submission Type"
sizes = ["1kib", "4kib", "1mib", "32mib"]
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "32 MiB"]
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"]
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"]
title = "Optimal Submission Method - Copy Operation tested Intra-Node on DDR"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_ns):
time_seconds = time_ns * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
def load_time_mesurements(file_path,type_label):
with open(file_path, 'r') as file:
data = json.load(file)
iterations = data["list"][0]["task"]["iterations"]
divisor = 1
# bs and ms types for submission process more than one
# element per run and the results therefore must be
# divided by this number
if type_label in ["bs10", "ms10"]: divisor = 10
elif type_label in ["ms50", "bs50"]: divisor = 50
else: divisor = 1
return {
"total": data["list"][0]["report"]["time"]["total"] / (iterations * divisor),
"combined": [ x / divisor for x in data["list"][0]["report"]["time"]["combined"]],
"submission": [ x / divisor for x in data["list"][0]["report"]["time"]["submission"]],
"completion": [ x / divisor for x in data["list"][0]["report"]["time"]["completion"]]
}
def process_file_to_dataset(file_path, type_label,size_label):
type_index = index_from_element(type_label,types)
type_nice = types_nice[type_index]
size_index = index_from_element(size_label, sizes)
size_nice = sizes_nice[size_index]
data_size = 0
if size_label == "1kib": data_size = 1024;
elif size_label == "4kib": data_size = 4 * 1024;
elif size_label == "1mib": data_size = 1024 * 1024;
elif size_label == "32mib": data_size = 32 * 1024 * 1024;
elif size_label == "1gib": data_size = 1024 * 1024 * 1024;
else: data_size = 0
try:
time = load_time_mesurements(file_path,type_label)["combined"]
run_idx = 0
for t in time:
data.append({ runid : run_idx, x_label: size_nice, var_label : type_nice, y_label : calc_throughput(data_size, t)})
run_idx = run_idx + 1
except FileNotFoundError:
return
def main():
folder_path = "benchmark-results/"
for type_label in types:
for size in sizes:
file = os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json")
process_file_to_dataset(file, type_label, size)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-opt-submitmethod.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()