"/home/hein/.local/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
" return [torch.tensor(vocab.lookup_indices(item)) for item in predict_generator]"
]
},
@ -1838,7 +1846,7 @@
},
{
"cell_type": "code",
"execution_count": 63,
"execution_count": 36,
"id": "6e2c35ba",
"metadata": {},
"outputs": [
@ -1848,7 +1856,7 @@
"device(type='cuda')"
]
},
"execution_count": 63,
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
@ -1868,23 +1876,26 @@
},
{
"cell_type": "code",
"execution_count": 68,
"execution_count": 40,
"id": "223eed8a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
"ename": "RuntimeError",
"evalue": "Error(s) in loading state_dict for TransformerModel:\n\tsize mismatch for encoder.weight: copying a param with shape torch.Size([84399, 200]) from checkpoint, the shape in current model is torch.Size([6526, 200]).\n\tsize mismatch for decoder.weight: copying a param with shape torch.Size([84399, 200]) from checkpoint, the shape in current model is torch.Size([6526, 200]).\n\tsize mismatch for decoder.bias: copying a param with shape torch.Size([84399]) from checkpoint, the shape in current model is torch.Size([6526]).",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/torch/nn/modules/module.py:1667\u001b[0m, in \u001b[0;36mModule.load_state_dict\u001b[0;34m(self, state_dict, strict)\u001b[0m\n\u001b[1;32m 1662\u001b[0m error_msgs\u001b[38;5;241m.\u001b[39minsert(\n\u001b[1;32m 1663\u001b[0m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMissing key(s) in state_dict: \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 1664\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(k) \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m missing_keys)))\n\u001b[1;32m 1666\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(error_msgs) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m-> 1667\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mError(s) in loading state_dict for \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 1668\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(error_msgs)))\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _IncompatibleKeys(missing_keys, unexpected_keys)\n",
"\u001b[0;31mRuntimeError\u001b[0m: Error(s) in loading state_dict for TransformerModel:\n\tsize mismatch for encoder.weight: copying a param with shape torch.Size([84399, 200]) from checkpoint, the shape in current model is torch.Size([6526, 200]).\n\tsize mismatch for decoder.weight: copying a param with shape torch.Size([84399, 200]) from checkpoint, the shape in current model is torch.Size([6526, 200]).\n\tsize mismatch for decoder.bias: copying a param with shape torch.Size([84399]) from checkpoint, the shape in current model is torch.Size([6526])."