|
|
import os import json import pandas as pd from pandas.core.ops import methods import seaborn as sns import matplotlib.pyplot as plt
runid = "Run ID" x_label = "Copy Type" y_label = "Throughput in GiB/s" var_label = "Configuration" types = ["intersock-n0ton4-1mib", "internode-n0ton1-1mib", "intersock-n0ton4-1gib", "internode-n0ton1-1gib"] types_nice = ["Inter-Socket Copy 1MiB", "Inter-Node Copy 1MiB", "Inter-Socket Copy 1GiB", "Inter-Node Copy 1GiB"] copy_methods = ["dstcopy", "srccopy", "xcopy", "srcoutsidercopy", "dstoutsidercopy", "sockoutsidercopy", "nodeoutsidercopy"] copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines", "Engine on SRC-Socket, not SRC-Node", "Engine on DST-Socket, not DST-Node", "Engine on different Socket", "Engine on same Socket but neither SRC nor DST Node"] title = "Performance of Engine Location - Copy Operation on DDR with 1 Engine per WQ"
index = [runid, x_label, var_label] data = []
def calc_throughput(size_bytes,time_microseconds): time_seconds = time_microseconds * 1e-9 size_gib = size_bytes / (1024 ** 3) throughput_gibs = size_gib / time_seconds return throughput_gibs
def index_from_element(value,array): for (idx,val) in enumerate(array): if val == value: return idx return 0
def load_and_process_copy_json(file_path,method_label): with open(file_path, 'r') as file: data = json.load(file) iterations = data["list"][0]["task"]["iterations"] # Extracting time from JSON structure if method_label == "xcopy": # For xcopy method, add times from two entries and divide by 3 time0 = data["list"][0]["report"]["time"] time1 = data["list"][1]["report"]["time"]
return { "total": max(time0["total"],time1["total"]), "combined" : [max(x,y) for x,y in zip(time0["combined"], time1["combined"])], "submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])], "completion" : [max(x,y) for x,y in zip(time0["submission"], time1["submission"])] }
else: return data["list"][0]["report"]["time"]
# Function to plot the graph for the new benchmark def create_copy_dataset(file_path, method_label, type_label): method_index = index_from_element(method_label,copy_methods) method_nice = copy_methods_nice[method_index] type_index = index_from_element(type_label, types) type_nice = types_nice[type_index] data_size = 0
if type_label in ["internode-n0ton1-1mib", "intersock-n0ton4-1mib"]: data_size = 1024 * 1024 else: data_size = 1024*1024*1024
try: time = load_and_process_copy_json(file_path,method_label)["total"] run_idx = 0 for t in time: data.append({ runid : run_idx, x_label: type_nice, var_label : method_nice, y_label : calc_throughput(data_size, t)}) run_idx = run_idx + 1 except FileNotFoundError: return
# Main function to iterate over files and create plots for the new benchmark def main(): folder_path = "benchmark-results/"
for method_label in copy_methods: for type_label in types: file = os.path.join(folder_path, f"{method_label}-{type_label}-1e.json") create_copy_dataset(file, method_label, type_label)
df = pd.DataFrame(data) df.set_index(index, inplace=True) df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title) plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"), bbox_inches='tight') plt.show()
if __name__ == "__main__": main()
|