Browse Source
finish the move to save entire results and not condensed average in the plotter scripts
master
finish the move to save entire results and not condensed average in the plotter scripts
master
Constantin Fürst
1 year ago
5 changed files with 170 additions and 79 deletions
-
70benchmarks/benchmark-plotters/plot-cost-mtsubmit.py
-
74benchmarks/benchmark-plotters/plot-perf-enginelocation.py
-
90benchmarks/benchmark-plotters/plot-perf-mtsubmit.py
-
15benchmarks/benchmark-plotters/plot-perf-submitmethod.py
-
BINbenchmarks/benchmark-results/plot-perf-submitmethod.png
@ -0,0 +1,90 @@ |
|||
import os |
|||
import json |
|||
import pandas as pd |
|||
from itertools import chain |
|||
import seaborn as sns |
|||
import matplotlib.pyplot as plt |
|||
|
|||
runid = "Run ID" |
|||
x_label = "Thread Count" |
|||
y_label = "Throughput in GiB/s" |
|||
var_label = "Thread Counts" |
|||
thread_counts = ["1t", "2t", "4t", "8t", "12t"] |
|||
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"] |
|||
engine_counts = ["1e", "4e"] |
|||
engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"] |
|||
title = "Combined Throughput - Copy Operation Intra-Node on DDR with Size 1 MiB" |
|||
|
|||
index = [runid, x_label, var_label] |
|||
data = [] |
|||
|
|||
|
|||
def calc_throughput(size_bytes,time_microseconds): |
|||
time_seconds = time_microseconds * 1e-9 |
|||
size_gib = size_bytes / (1024 ** 3) |
|||
throughput_gibs = size_gib / time_seconds |
|||
return throughput_gibs |
|||
|
|||
|
|||
def index_from_element(value,array): |
|||
for (idx,val) in enumerate(array): |
|||
if val == value: return idx |
|||
return 0 |
|||
|
|||
|
|||
def load_and_process_copy_json(file_path): |
|||
with open(file_path, 'r') as file: |
|||
data = json.load(file) |
|||
|
|||
count = data["count"] |
|||
|
|||
return { |
|||
"combined" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], |
|||
"submission" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], |
|||
"completion" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] |
|||
} |
|||
|
|||
# Function to plot the graph for the new benchmark |
|||
def create_mtsubmit_dataset(file_paths, engine_label): |
|||
times = [] |
|||
|
|||
engine_index = index_from_element(engine_label,engine_counts) |
|||
engine_nice = engine_counts_nice[engine_index] |
|||
|
|||
idx = 0 |
|||
for file_path in file_paths: |
|||
time = load_and_process_copy_json(file_path) |
|||
times.append(time["combined"]) |
|||
idx = idx + 1 |
|||
|
|||
throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times] |
|||
|
|||
idx = 0 |
|||
for run_set in throughput: |
|||
run_idx = 0 |
|||
for run in run_set: |
|||
data.append({ runid : run_idx, x_label: thread_counts_nice[idx], var_label : engine_nice, y_label : throughput[idx][run_idx]}) |
|||
run_idx = run_idx + 1 |
|||
idx = idx + 1 |
|||
|
|||
|
|||
# Main function to iterate over files and create plots for the new benchmark |
|||
def main(): |
|||
folder_path = "benchmark-results/" # Replace with the actual path to your folder |
|||
|
|||
for engine_label in engine_counts: |
|||
mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts] |
|||
create_mtsubmit_dataset(mt_file_paths, engine_label) |
|||
|
|||
df = pd.DataFrame(data) |
|||
df.set_index(index, inplace=True) |
|||
|
|||
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd") |
|||
|
|||
plt.title(title) |
|||
plt.savefig(os.path.join(folder_path, "plot-perf-mtsubmit.png"), bbox_inches='tight') |
|||
plt.show() |
|||
|
|||
|
|||
if __name__ == "__main__": |
|||
main() |
Before Width: 691 | Height: 453 | Size: 36 KiB After Width: 691 | Height: 453 | Size: 36 KiB |
Write
Preview
Loading…
Cancel
Save
Reference in new issue