Browse Source
modify plotters to a more streamlined state, all now use the file-loop in main and have a function that processes one file into the dataset, also adds the peakthroughput plotter and removes the defunct opt-submitmethod plotter
master
modify plotters to a more streamlined state, all now use the file-loop in main and have a function that processes one file into the dataset, also adds the peakthroughput plotter and removes the defunct opt-submitmethod plotter
master
Constantin Fürst
1 year ago
5 changed files with 155 additions and 178 deletions
-
47benchmarks/benchmark-plotters/plot-cost-mtsubmit.py
-
104benchmarks/benchmark-plotters/plot-opt-submitmethod.py
-
16benchmarks/benchmark-plotters/plot-perf-enginelocation.py
-
80benchmarks/benchmark-plotters/plot-perf-peakthroughput.py
-
86benchmarks/benchmark-plotters/plot-perf-submitmethod.py
@ -1,104 +0,0 @@ |
|||
import os |
|||
import json |
|||
import pandas as pd |
|||
from pandas.core.ops import methods |
|||
from typing import List |
|||
import seaborn as sns |
|||
import matplotlib.pyplot as plt |
|||
|
|||
runid = "Run ID" |
|||
x_label = "Size of Submitted Task" |
|||
y_label = "Throughput in GiB/s, LogScale" |
|||
var_label = "Submission Type" |
|||
sizes = ["1kib", "4kib", "1mib", "32mib"] |
|||
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "32 MiB"] |
|||
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] |
|||
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"] |
|||
title = "Optimal Submission Method - Copy Operation tested Intra-Node on DDR" |
|||
|
|||
index = [runid, x_label, var_label] |
|||
data = [] |
|||
|
|||
def calc_throughput(size_bytes,time_microseconds): |
|||
time_seconds = time_microseconds * 1e-9 |
|||
size_gib = size_bytes / (1024 ** 3) |
|||
throughput_gibs = size_gib / time_seconds |
|||
return throughput_gibs |
|||
|
|||
|
|||
def index_from_element(value,array): |
|||
for (idx,val) in enumerate(array): |
|||
if val == value: return idx |
|||
return 0 |
|||
|
|||
|
|||
def load_and_process_submit_json(file_path): |
|||
with open(file_path, 'r') as file: |
|||
data = json.load(file) |
|||
iterations = data["list"][0]["task"]["iterations"] |
|||
|
|||
return { |
|||
"total": data["list"][0]["report"]["total"] / iterations, |
|||
"combined": data["list"][0]["report"]["combined"], |
|||
"submission": data["list"][0]["report"]["submission"], |
|||
"completion": data["list"][0]["report"]["completion"] |
|||
} |
|||
|
|||
|
|||
# Function to plot the graph for the new benchmark |
|||
def create_submit_dataset(file_paths, type_label): |
|||
times = [] |
|||
|
|||
type_index = index_from_element(type_label,types) |
|||
type_nice = types_nice[type_index] |
|||
|
|||
idx = 0 |
|||
for file_path in file_paths: |
|||
time = load_and_process_submit_json(file_path) |
|||
times.append(time["total"]) |
|||
idx = idx + 1 |
|||
|
|||
# Adjust time measurements based on type |
|||
# which can contain multiple submissions |
|||
if type_label in {"bs10", "ms10"}: |
|||
times = [[t / 10 for t in time] for time in times] |
|||
elif type_label in {"ms50", "bs50"}: |
|||
times = [[t / 50 for t in time] for time in times] |
|||
|
|||
times[0] = [t / 1 for t in times[0]] |
|||
times[1] = [t / 4 for t in times[1]] |
|||
times[2] = [t / (1024) for t in times[2]] |
|||
times[3] = [t / (32*1024) for t in times[3]] |
|||
|
|||
throughput = [[calc_throughput(1024,time) for time in t] for t in times] |
|||
|
|||
idx = 0 |
|||
for run_set in throughput: |
|||
run_idx = 0 |
|||
for run in run_set: |
|||
data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]}) |
|||
run_idx = run_idx + 1 |
|||
idx = idx + 1 |
|||
|
|||
|
|||
# Main function to iterate over files and create plots for the new benchmark |
|||
def main(): |
|||
folder_path = "benchmark-results/" # Replace with the actual path to your folder |
|||
|
|||
for type_label in types: |
|||
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] |
|||
create_submit_dataset(file_paths, type_label) |
|||
|
|||
df = pd.DataFrame(data) |
|||
df.set_index(index, inplace=True) |
|||
df = df.sort_values(y_label) |
|||
|
|||
ax = sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd") |
|||
ax.set(yscale="log") |
|||
sns.move_legend(ax, "lower right") |
|||
plt.title(title) |
|||
plt.savefig(os.path.join(folder_path, "plot-opt-submitmethod.png"), bbox_inches='tight') |
|||
plt.show() |
|||
|
|||
if __name__ == "__main__": |
|||
main() |
@ -0,0 +1,80 @@ |
|||
import os |
|||
import json |
|||
import pandas as pd |
|||
from pandas.core.ops import methods |
|||
from typing import List |
|||
import seaborn as sns |
|||
import matplotlib.pyplot as plt |
|||
|
|||
runid = "Run ID" |
|||
x_label = "Destination Node" |
|||
y_label = "Source Node" |
|||
v_label = "Throughput" |
|||
title = "Copy Throughput for 1GiB Elements running on SRC Node" |
|||
|
|||
data = [] |
|||
|
|||
|
|||
def mean_without_outliers(x): |
|||
return x.sort_values()[2:-2].mean() |
|||
|
|||
|
|||
def calc_throughput(size_bytes,time_ns): |
|||
time_seconds = time_ns * 1e-9 |
|||
size_gib = size_bytes / (1024 ** 3) |
|||
throughput_gibs = size_gib / time_seconds |
|||
return throughput_gibs |
|||
|
|||
|
|||
def index_from_element(value,array): |
|||
for (idx,val) in enumerate(array): |
|||
if val == value: return idx |
|||
return 0 |
|||
|
|||
|
|||
def load_time_mesurements(file_path): |
|||
with open(file_path, 'r') as file: |
|||
data = json.load(file) |
|||
iterations = data["list"][0]["task"]["iterations"] |
|||
|
|||
return { |
|||
"total": data["list"][0]["report"]["total"] / iterations, |
|||
"combined": data["list"][0]["report"]["combined"], |
|||
"submission": data["list"][0]["report"]["submission"], |
|||
"completion": data["list"][0]["report"]["completion"] |
|||
} |
|||
|
|||
|
|||
def process_file_to_dataset(file_path, src_node, dst_node): |
|||
data_size = 1024*1024*1024 |
|||
|
|||
try: |
|||
time = load_time_mesurements(file_path)["total"] |
|||
run_idx = 0 |
|||
for t in time: |
|||
data.append({ runid : run_idx, x_label : dst_node, y_label : src_node, v_label: calc_throughput(data_size, t)}) |
|||
run_idx = run_idx + 1 |
|||
except FileNotFoundError: |
|||
return |
|||
|
|||
|
|||
def main(): |
|||
folder_path = "benchmark-results/" |
|||
|
|||
for src_node in range(16): |
|||
for dst_node in range(16): |
|||
file = os.path .join(folder_path, f"copy-n{src_node}ton{dst_node}-1gib-1e.json") |
|||
process_file_to_dataset(file, src_node, dst_node) |
|||
|
|||
df = pd.DataFrame(data) |
|||
data_pivot = df.pivot_table(index=y_label, columns=x_label, values=v_label, aggfunc=mean_without_outliers) |
|||
|
|||
sns.heatmap(data_pivot, annot=True, palette="rocket", fmt=".0f") |
|||
|
|||
plt.title(title) |
|||
plt.savefig(os.path.join(folder_path, "plot-perf-peakthroughput.png"), bbox_inches='tight') |
|||
plt.show() |
|||
|
|||
|
|||
if __name__ == "__main__": |
|||
main() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue