Browse Source

add complex query as benchmarking option and evaluate results

master
Constantin Fürst 11 months ago
parent
commit
50560606a3
  1. 148
      qdp_project/src/Benchmark.cpp
  2. 72
      qdp_project/src/BenchmarkModes.hpp
  3. 24
      qdp_project/src/utils/BenchmarkHelpers.cpp

148
qdp_project/src/Benchmark.cpp

@ -14,62 +14,22 @@
#include "../../offloading-cacher/cache.hpp"
#include "BenchmarkHelpers.cpp"
#define MODE_PREFETCH
////////////////////////////////
/// BENCHMARK SETUP
constexpr size_t WL_SIZE_B = 4_GiB;
constexpr uint32_t WARMUP_ITERATION_COUNT = 5;
constexpr uint32_t ITERATION_COUNT = 5;
#ifdef MODE_PREFETCH
constexpr uint32_t GROUP_COUNT = 16;
constexpr size_t CHUNK_SIZE_B = 8_MiB;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 2;
constexpr bool PERFORM_CACHING = true;
constexpr bool DATA_IN_HBM = false;
constexpr char MODE_STRING[] = "prefetch";
#endif
#ifdef MODE_DRAM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 8;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool DATA_IN_HBM = false;
constexpr char MODE_STRING[] = "dram";
#endif
#ifdef MODE_HBM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 8;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool DATA_IN_HBM = true;
constexpr char MODE_STRING[] = "hbm";
#ifndef MODE_SET_BY_CMAKE
#define MODE_COMPLEX_PREFETCH
#endif
/// DO NOT CONFIGURE BEYOND THIS
////////////////////////////////
#include "BenchmarkModes.hpp"
#include "BenchmarkHelpers.cpp"
constexpr uint64_t CMP_A = 50;
constexpr uint64_t CMP_B = 42;
constexpr uint32_t TC_COMBINED = TC_SCANA + TC_SCANB + TC_AGGRJ;
constexpr size_t WL_SIZE_ELEMENTS = WL_SIZE_B / sizeof(uint64_t);
constexpr size_t CHUNK_COUNT = WL_SIZE_B / CHUNK_SIZE_B;
constexpr size_t CHUNK_SIZE_ELEMENTS = CHUNK_SIZE_B / sizeof(uint64_t);
constexpr size_t RUN_COUNT = CHUNK_COUNT / GROUP_COUNT;
constexpr size_t MASK_ELEMENT_SIZE = 16;
constexpr size_t MASK_STEP_SIZE = CHUNK_SIZE_ELEMENTS / MASK_ELEMENT_SIZE;
static_assert(RUN_COUNT > 0);
static_assert(TC_SCANB <= TC_AGGRJ);
static_assert(WL_SIZE_B % 16 == 0);
static_assert(CHUNK_SIZE_B % 16 == 0);
@ -96,6 +56,7 @@ std::shared_future<void> LAUNCH_;
uint64_t* DATA_A_;
uint64_t* DATA_B_;
uint16_t* MASK_A_;
uint16_t* MASK_B_;
uint64_t* DATA_DST_;
inline uint64_t get_chunk_index(const size_t gid, const size_t rid) {
@ -179,11 +140,24 @@ void process_timings(
}
}
// if more b than j -> perform b normal, subsplit j
// if more j than b -> subsplit b like it is now
void scan_b(size_t gid, size_t tid) {
constexpr size_t split = TC_AGGRJ / (TC_SCANB == 0 ? 1 : TC_SCANB);
constexpr bool SUBSPLIT_SCANB = TC_AGGRJ > TC_SCANB;
constexpr size_t SUBCHUNK_SIZE_ELEMENTS_SCANB = TC_AGGRJ / (TC_SCANB == 0 ? 1 : TC_SCANB);
constexpr uint32_t TC_SUBSPLIT_SCANB = SUBSPLIT_SCANB ? TC_SCANB : TC_AGGRJ;
const size_t start = tid * split;
const size_t end = start + split;
size_t start, end;
if constexpr (SUBSPLIT_SCANB) {
start = tid * SUBCHUNK_SIZE_ELEMENTS_SCANB;
end = start + SUBCHUNK_SIZE_ELEMENTS_SCANB;
}
else {
start = 0;
end = RUN_COUNT;
}
THREAD_TIMING_[SCANB_TIMING_INDEX][tid * gid].clear();
THREAD_TIMING_[SCANB_TIMING_INDEX][tid * gid].resize(1);
@ -194,11 +168,20 @@ void scan_b(size_t gid, size_t tid) {
if constexpr (PERFORM_CACHING) {
for (size_t i = start; i < end; i++) {
const size_t chunk_index = get_chunk_index(gid, 0);
uint64_t* chunk_ptr = get_chunk<TC_SUBSPLIT_SCANB>(DATA_B_, chunk_index, i);
CACHE_.Access(reinterpret_cast<uint8_t*>(chunk_ptr), CHUNK_SIZE_B / TC_SUBSPLIT_SCANB);
}
}
if constexpr (COMPLEX_QUERY) {
for (size_t i = start; i < end; i++) {
const size_t chunk_index = get_chunk_index(gid, 0);
uint64_t* chunk_ptr = get_chunk<TC_AGGRJ>(DATA_B_, chunk_index, i);
uint64_t* chunk_ptr = get_chunk<TC_SUBSPLIT_SCANB>(DATA_B_, chunk_index, i);
uint16_t* mask_ptr = get_mask<TC_SUBSPLIT_SCANB>(MASK_B_, chunk_index, i);
CACHE_.Access(reinterpret_cast<uint8_t*>(chunk_ptr), CHUNK_SIZE_B / TC_AGGRJ);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, CMP_B, CHUNK_SIZE_B / TC_SUBSPLIT_SCANB);
}
}
@ -217,13 +200,11 @@ void scan_a(size_t gid, size_t tid) {
THREAD_TIMING_[SCANA_TIMING_INDEX][tid * gid][0][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
for (size_t i = 0; i < RUN_COUNT; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_SCANA>(DATA_A_, chunk_index, tid);
uint16_t* mask_ptr = get_mask<TC_SCANA>(MASK_A_, chunk_index, tid);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, CMP_A, CHUNK_SIZE_B / TC_SCANA);
}
THREAD_TIMING_[SCANA_TIMING_INDEX][tid * gid][0][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
@ -233,31 +214,47 @@ void scan_a(size_t gid, size_t tid) {
}
void aggr_j(size_t gid, size_t tid) {
constexpr bool SUBSPLIT_AGGRJ = TC_SCANB > TC_AGGRJ;
constexpr size_t SUBCHUNK_SIZE_ELEMENTS_AGGRJ = TC_SCANB / TC_AGGRJ;
constexpr uint32_t TC_SUBSPLIT_AGGRJ = SUBSPLIT_AGGRJ ? TC_AGGRJ : TC_SCANB;
size_t start, end;
if constexpr (SUBSPLIT_AGGRJ) {
start = tid * SUBCHUNK_SIZE_ELEMENTS_AGGRJ;
end = start + SUBCHUNK_SIZE_ELEMENTS_AGGRJ;
}
else {
start = 0;
end = RUN_COUNT;
}
CACHE_HITS_[gid * tid] = 0;
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid].clear();
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid].resize(1);
LAUNCH_.wait();
__m512i aggregator = aggregation::OP::zero();
LAUNCH_.wait();
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][0][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now();
BARRIERS_[gid]->arrive_and_wait();
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][0][TIME_STAMP_WAIT] = std::chrono::steady_clock::now();
for (size_t i = 0; i < RUN_COUNT; i++) {
for (size_t i = start; i < end; i++) {
const size_t chunk_index = get_chunk_index(gid, i);
uint64_t* chunk_ptr = get_chunk<TC_AGGRJ>(DATA_B_, chunk_index, tid);
uint16_t* mask_ptr = get_mask<TC_AGGRJ>(MASK_A_, chunk_index, tid);
uint64_t* chunk_ptr = get_chunk<TC_SUBSPLIT_AGGRJ>(DATA_B_, chunk_index, tid);
uint16_t* mask_ptr_a = get_mask<TC_SUBSPLIT_AGGRJ>(MASK_A_, chunk_index, tid);
uint16_t* mask_ptr_b = get_mask<TC_SUBSPLIT_AGGRJ>(MASK_B_, chunk_index, tid);
std::unique_ptr<dsacache::CacheData> data;
uint64_t* data_ptr;
if constexpr (PERFORM_CACHING) {
data = CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), CHUNK_SIZE_B / TC_AGGRJ);
data = CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), CHUNK_SIZE_B / TC_SUBSPLIT_AGGRJ);
data->WaitOnCompletion(dsacache::WAIT_WEAK);
data_ptr = reinterpret_cast<uint64_t*>(data->GetDataLocation());
@ -273,7 +270,13 @@ void aggr_j(size_t gid, size_t tid) {
}
uint64_t tmp = _mm512_reduce_add_epi64(aggregator);
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr, CHUNK_SIZE_B / TC_AGGRJ);
if constexpr (COMPLEX_QUERY) {
aggregator = aggregation::apply_masked(aggregator, chunk_ptr, mask_ptr_a, mask_ptr_b, CHUNK_SIZE_B / TC_SUBSPLIT_AGGRJ);
}
else {
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr_a, CHUNK_SIZE_B / TC_SUBSPLIT_AGGRJ);
}
}
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][0][TIME_STAMP_END] = std::chrono::steady_clock::now();
@ -297,17 +300,23 @@ int main() {
fout << "run;rt-ns;rt-s;result[0];scana-run;scana-wait;scanb-run;scanb-wait;aggrj-run;aggrj-wait;cache-hr;" << std::endl;
if constexpr (DATA_IN_HBM) {
DATA_A_ = (uint64_t*) numa_alloc_onnode(WL_SIZE_B, cache_node);
DATA_B_ = (uint64_t*) numa_alloc_onnode(WL_SIZE_B, cache_node);
// a is allways allocated in DRAM
DATA_A_ = (uint64_t*) numa_alloc_local(WL_SIZE_B);
// resulting masks for a and b and total result will allways reside in HBM
MASK_A_ = (uint16_t*) numa_alloc_onnode(WL_SIZE_ELEMENTS, cache_node);
MASK_B_ = (uint16_t*) numa_alloc_onnode(WL_SIZE_ELEMENTS, cache_node);
DATA_DST_ = (uint64_t*) numa_alloc_onnode(TC_AGGRJ * GROUP_COUNT * sizeof(uint64_t), cache_node);
// location of b depends on configuration
if constexpr (STORE_B_IN_HBM) {
DATA_B_ = (uint64_t*) numa_alloc_onnode(WL_SIZE_B, cache_node);
}
else {
DATA_A_ = (uint64_t*) numa_alloc_local(WL_SIZE_B);
DATA_B_ = (uint64_t*) numa_alloc_local(WL_SIZE_B);
MASK_A_ = (uint16_t*) numa_alloc_local(WL_SIZE_ELEMENTS);
DATA_DST_ = (uint64_t*) numa_alloc_local(TC_AGGRJ * GROUP_COUNT * sizeof(uint64_t));
}
if constexpr (PERFORM_CACHING) {
@ -315,7 +324,7 @@ int main() {
}
fill_mt<uint64_t>(DATA_A_, WL_SIZE_B, 0, 100, 42);
fill_mt<uint64_t>(DATA_A_, WL_SIZE_B, 0, 100, 420);
fill_mt<uint64_t>(DATA_B_, WL_SIZE_B, 0, 100, 420);
for (uint32_t i = 0; i < ITERATION_COUNT + WARMUP_ITERATION_COUNT; i++) {
std::promise<void> launch_promise;
@ -353,6 +362,11 @@ int main() {
const auto time_end = std::chrono::steady_clock::now();
const uint64_t result_actual = DATA_DST_[0];
const uint64_t result_expected = COMPLEX_QUERY ? sum_check(CMP_A, DATA_A_, DATA_B_, WL_SIZE_B) : sum_check_complex(CMP_A, CMP_B, DATA_A_, DATA_B_, WL_SIZE_B);
std::cout << "Result Expected: " << result_expected << ", Result Actual: " << result_actual << std::endl;
if (i >= WARMUP_ITERATION_COUNT) {
uint64_t scana_run = 0, scana_wait = 0, scanb_run = 0, scanb_wait = 0, aggrj_run = 0, aggrj_wait = 0;
process_timings(&scana_run, &scana_wait, &scanb_run, &scanb_wait, &aggrj_run, &aggrj_wait);
@ -364,7 +378,7 @@ int main() {
fout
<< i - WARMUP_ITERATION_COUNT << ";"
<< nanos << ";" << seconds << ";"
<< std::hex << DATA_DST_[0] << std::dec << ";"
<< DATA_DST_[0] << ";"
<< scana_run << ";" << scana_wait << ";" << scanb_run << ";" << scanb_wait << ";" << aggrj_run << ";" << aggrj_wait << ";"
<< process_cache_hitrate() << ";"
<< std::endl;

72
qdp_project/src/BenchmarkModes.hpp

@ -0,0 +1,72 @@
#pragma once
constexpr size_t WL_SIZE_B = 4_GiB;
constexpr uint32_t WARMUP_ITERATION_COUNT = 5;
constexpr uint32_t ITERATION_COUNT = 5;
#ifdef MODE_SIMPLE_PREFETCH
constexpr uint32_t GROUP_COUNT = 16;
constexpr size_t CHUNK_SIZE_B = 8_MiB;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 2;
constexpr bool PERFORM_CACHING = true;
constexpr bool STORE_B_IN_HBM = false;
constexpr char MODE_STRING[] = "prefetch";
constexpr bool COMPLEX_QUERY = false;
#endif
#ifdef MODE_SIMPLE_DRAM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 16;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool STORE_B_IN_HBM = false;
constexpr char MODE_STRING[] = "dram";
constexpr bool COMPLEX_QUERY = false;
#endif
#ifdef MODE_SIMPLE_HBM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 16;
constexpr uint32_t TC_SCANA = 2;
constexpr uint32_t TC_SCANB = 0;
constexpr uint32_t TC_AGGRJ = 1;
constexpr bool PERFORM_CACHING = false;
constexpr bool STORE_B_IN_HBM = true;
constexpr char MODE_STRING[] = "hbm";
constexpr bool COMPLEX_QUERY = false;
#endif
#ifdef MODE_COMPLEX_PREFETCH
constexpr uint32_t GROUP_COUNT = 16;
constexpr size_t CHUNK_SIZE_B = 8_MiB;
constexpr uint32_t TC_SCANA = 1;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 2;
constexpr bool PERFORM_CACHING = true;
constexpr bool STORE_B_IN_HBM = false;
constexpr char MODE_STRING[] = "prefetch";
constexpr bool COMPLEX_QUERY = true;
#endif
#ifdef MODE_COMPLEX_DRAM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 16;
constexpr uint32_t TC_SCANA = 1;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 2;
constexpr bool PERFORM_CACHING = false;
constexpr bool STORE_B_IN_HBM = false;
constexpr char MODE_STRING[] = "dram";
constexpr bool COMPLEX_QUERY = true;
#endif
#ifdef MODE_COMPLEX_HBM
constexpr size_t CHUNK_SIZE_B = 2_MiB;
constexpr uint32_t GROUP_COUNT = 16;
constexpr uint32_t TC_SCANA = 1;
constexpr uint32_t TC_SCANB = 1;
constexpr uint32_t TC_AGGRJ = 2;
constexpr bool PERFORM_CACHING = false;
constexpr bool STORE_B_IN_HBM = true;
constexpr char MODE_STRING[] = "hbm";
constexpr bool COMPLEX_QUERY = true;
#endif

24
qdp_project/src/utils/BenchmarkHelpers.cpp

@ -1,5 +1,21 @@
#include <vector>
uint64_t sum_check(uint64_t compare_value, uint64_t* row_A, uint64_t* row_B, size_t row_size) {
uint64_t sum = 0;
for(int i = 0; i < row_size / sizeof(uint64_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
uint64_t sum_check_complex(uint64_t compare_value_a, uint64_t compare_value_b, uint64_t* row_A, uint64_t* row_B, size_t row_size) {
uint64_t sum = 0;
for(int i = 0; i < row_size / sizeof(uint64_t); ++i) {
sum += (row_A[i] < compare_value_a && row_B[i] < compare_value_b) * row_B[i];
}
return sum;
}
int CachePlacementPolicy(const int numa_dst_node, const int numa_src_node, const size_t data_size) {
return numa_dst_node < 8 ? numa_dst_node + 8 : numa_dst_node;
}
@ -29,11 +45,3 @@ struct NopStruct {
return;
}
};
uint64_t sum_check(uint64_t compare_value, uint64_t* row_A, uint64_t* row_B, size_t row_size) {
uint64_t sum = 0;
for(int i = 0; i < row_size / sizeof(uint64_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
Loading…
Cancel
Save