Browse Source

add query driven prefetching code repository copy

master
Constantin Fürst 11 months ago
parent
commit
641a7593fe
  1. 104
      qdp_project/.gitignore
  2. 104
      qdp_project/CMakeLists.txt
  3. 3
      qdp_project/README.md
  4. 10
      qdp_project/bench_all_dimes.sh
  5. 15
      qdp_project/bench_max.sh
  6. 33
      qdp_project/cmake_all_dimes.sh
  7. 9
      qdp_project/cmake_max.sh
  8. 0
      qdp_project/src/.gitkeep
  9. 316
      qdp_project/src/algorithm/operators/aggregation.h
  10. 170
      qdp_project/src/algorithm/operators/filter.h
  11. 240
      qdp_project/src/benchmark/DIMES_benchmark.cpp
  12. 260
      qdp_project/src/benchmark/DIMES_cores_benchmark.cpp
  13. 289
      qdp_project/src/benchmark/MAX_benchmark.cpp
  14. 147
      qdp_project/src/benchmark/QDP_minimal.h
  15. 149
      qdp_project/src/benchmark/doubly_filtered_agg.cpp
  16. 184
      qdp_project/src/benchmark/filter_aggregate_pipeline.cpp
  17. 188
      qdp_project/src/benchmark/latency.cpp
  18. 271
      qdp_project/src/benchmark/micro_benchmarks.cpp
  19. 391
      qdp_project/src/benchmark/pipelines/DIMES_scan_filter_pipe.h
  20. 395
      qdp_project/src/benchmark/pipelines/MAX_scan_filter_pipe.h
  21. 387
      qdp_project/src/benchmark/pipelines/scan_filter_pipe.h
  22. 80
      qdp_project/src/utils/array_utils.h
  23. 73
      qdp_project/src/utils/barrier_utils.h
  24. 33
      qdp_project/src/utils/const.h
  25. 82
      qdp_project/src/utils/cpu_set_utils.h
  26. 89
      qdp_project/src/utils/execution_modes.h
  27. 76
      qdp_project/src/utils/file_output.h
  28. 208
      qdp_project/src/utils/iterable_range.h
  29. 152
      qdp_project/src/utils/measurement_utils.h
  30. 45
      qdp_project/src/utils/memory_literals.h
  31. 6
      qdp_project/src/utils/pcm.h
  32. 80
      qdp_project/src/utils/timer_utils.h
  33. 93
      qdp_project/src/utils/vector_loader.h

104
qdp_project/.gitignore

@ -0,0 +1,104 @@
bin/
# CMake building files
CMakeLists.txt.user
CMakeCache.txt
CMakeFiles
CMakeScripts
Testing
Makefile
cmake_install.cmake
install_manifest.txt
compile_commands.json
CTestTestfile.cmake
_deps
.cmake
# Prerequisites
*.d
# Object files
*.o
*.ko
*.obj
*.elf
# Linker output
*.ilk
*.map
*.exp
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/
*.su
*.idb
*.pdb
# Kernel Module Compile Results
*.mod*
*.cmd
.tmp_versions/
modules.order
Module.symvers
Mkfile.old
dkms.conf
# Prerequisites
*.d
# Compiled Object files
*.slo
*.lo
*.o
*.obj
# Precompiled Headers
*.gch
*.pch
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
# Fortran module files
*.mod
*.smod
# Compiled Static libraries
*.lai
*.la
*.a
*.lib
# Executables
*.exe
*.out
*.app

104
qdp_project/CMakeLists.txt

@ -0,0 +1,104 @@
cmake_minimum_required(VERSION 3.18)
# set the project name
project(NUMA_Slow_Fast_Datamigration_Test VERSION 0.1)
# specify the C standard
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED True)
#set flags on need cross compile for sapphirerapids architecture
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=sapphirerapids")
#set flags on need cross compile for skylake micro architecture
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=skylake-avx512")
#set flags on need cross compile for knights landing micro architecture (for debugging)
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx512f -mavx512cd -mavx512er -mavx512pf")
#suppress selected! warnigs that are not very important to resolve. This is to keep the compileation output clean
set(SUPPRESS_WARNINGS "-Wno-literal-suffix -Wno-volatile")
set(DEBUG_FLAGS "-g3" "-ggdb")
set(RELEASE_FLAGS "-O3")
#set pcm location
set(PCM_LOCATION ./thirdParty/pcm)
set(PCM_LINKS -lpcm -L${CMAKE_CURRENT_LIST_DIR}/${PCM_LOCATION}/build/lib)
# pass the in formation about the shared library location to the linker
link_directories(${CMAKE_CURRENT_LIST_DIR}/${PCM_LOCATION}/build/lib)
#set flags used for Release and Debug build type
add_compile_options(
"$<$<CONFIG:Release>:${RELEASE_FLAGS}>"
"$<$<CONFIG:Debug>:${DEBUG_FLAGS}>"
)
# evaluate custom variables
function(eval vname vvalid vdefault)
# is variable is set to the below value if its not already defined from the comand line
set(VALID ${vvalid} CACHE INTERNAL "Possible values for ${vname}")
set(${vname} ${vdefault} CACHE STRING "The barrier mode")
# command for GUI shenanigans
set_property(CACHE ${vname} PROPERTY STRINGS VALID)
if(${vname} IN_LIST VALID)
message(STATUS "Variable ${vname} = ${${vname}}")
else()
message(STATUS "Variable ${vname} has invalid value ${${vname}}")
# set the fallback value for use in parent function
unset(${vname} CACHE)
message(STATUS "Fallback to default: ${vname} = ${vdefault}")
set(${vname} ${vdefault} PARENT_SCOPE)
endif()
endfunction()
eval(WSUPPRESS "suppress;show" "show")
if($<STREQUAL:${BUFFER_LIMIT},suppress> EQUAL 1)
add_compile_options("${SUPPRESS_WARNINGS}")
endif()
eval(BARRIER_MODE "global;local" "global")
add_definitions(-DBARRIER_MODE="${BARRIER_MODE}")
eval(BUFFER_LIMIT "unlimited;limited" "unlimited")
add_definitions(-DBUFFER_LIMIT=$<STREQUAL:${BUFFER_LIMIT},limited>)
eval(QUERY "simple;complex" "simple")
add_definitions(-DQUERY=$<STREQUAL:${QUERY},simple>)
eval(THREAD_FACTOR "1;2;3;4;5;6;7;8;9;10" "4")
add_definitions(-DTHREAD_GROUP_MULTIPLIER=${THREAD_FACTOR})
eval(PINNING "cpu;numa" "cpu")
add_definitions(-DPINNING=$<STREQUAL:${PINNING},cpu>)
eval(PCM_M "true;false" "false")
add_definitions(-DPCM_M=$<STREQUAL:${PCM_M},true>)
add_definitions(${PCM_LINKS})
# build directory
set(CMAKE_BINARY_DIR "../bin") #relative to inside build
set(EXECUTABLE_OUTPUT_PATH ${CMAKE_BINARY_DIR})
# include directories
include_directories(src/utils)
include_directories(src/algorithm)
include_directories(src/algorithm/operators)
include_directories(thirdParty/pcm/src)
# link libraries
link_libraries(-lnuma -lpthread)
# Add targets only below
# specify build targets
add_executable(FilterAggregatePipeline src/benchmark/filter_aggregate_pipeline.cpp)
add_executable(DoublyFiltered src/benchmark/doubly_filtered_agg.cpp)
add_executable(DIMESBench src/benchmark/DIMES_benchmark.cpp)
add_executable(DIMESCoreBench src/benchmark/DIMES_cores_benchmark.cpp)
add_executable(MicroBench src/benchmark/micro_benchmarks.cpp)
add_executable(MAXBench src/benchmark/MAX_benchmark.cpp
src/benchmark/QDP_minimal.h)
target_link_libraries(MAXBench libpcm.so)
add_executable(LatencyBench src/benchmark/latency.cpp)

3
qdp_project/README.md

@ -0,0 +1,3 @@
This is a copy of the Query Driven Prefetching Repository
https://os.inf.tu-dresden.de/repo/gitbox/andre.berthold/Query-driven_Prefetching/src/branch/qdp_minimal/code
Original Authors: André Berthold and Anna Bartuschka

10
qdp_project/bench_all_dimes.sh

@ -0,0 +1,10 @@
#!bin/bash
../bin/DIMESBench_gus
../bin/DIMESBench_guc
../bin/DIMESBench_gls
../bin/DIMESBench_glc
../bin/DIMESBench_lus
../bin/DIMESBench_luc
../bin/DIMESBench_lls
../bin/DIMESBench_llc

15
qdp_project/bench_max.sh

@ -0,0 +1,15 @@
#!bin/bash
current_date_time=$(date)
echo "Benchmark start at: $current_date_time"
../bin/MAXBench_gcc
cp ../results/max_q-complex_bm-global_bl-unlimited_tc-121MiB-2MiB.csv ../results/max_q-complex_bm-global_bl-unlimited_tc-121MiB-2MiB_pin_c_HBM.csv
../bin/MAXBench_gcn
cp ../results/max_q-complex_bm-global_bl-unlimited_tc-121MiB-2MiB.csv ../results/max_q-complex_bm-global_bl-unlimited_tc-121MiB-2MiB_pin_n_HBM.csv
current_date_time=$(date)
echo "Benchmark end at: $current_date_time"

33
qdp_project/cmake_all_dimes.sh

@ -0,0 +1,33 @@
#!bin/bash
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=unlimited -DQUERY=simple ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_gus
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=unlimited -DQUERY=complex ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_guc
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=limited -DQUERY=simple ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_gls
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=limited -DQUERY=complex ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_glc
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=local -DBUFFER_LIMIT=unlimited -DQUERY=simple ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_lus
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=local -DBUFFER_LIMIT=unlimited -DQUERY=complex ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_luc
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=local -DBUFFER_LIMIT=limited -DQUERY=simple ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_lls
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=local -DBUFFER_LIMIT=limited -DQUERY=complex ..
cmake --build . --target DIMESBench
mv ../bin/DIMESBench ../bin/DIMESBench_llc

9
qdp_project/cmake_max.sh

@ -0,0 +1,9 @@
#!bin/bash
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=unlimited -DQUERY=complex -DTHREAD_FACTOR=2 -DPINNING=cpu -DPCM_M=false ..
cmake --build . --target MAXBench
mv ../bin/MAXBench ../bin/MAXBench_gcc
cmake -DCMAKE_BUILD_TYPE=Release -DWSUPPRESS=suppress -DBARRIER_MODE=global -DBUFFER_LIMIT=unlimited -DQUERY=complex -DTHREAD_FACTOR=2 -DPINNING=numa -DPCM_M=false ..
cmake --build . --target MAXBench
mv ../bin/MAXBench ../bin/MAXBench_gcn

0
qdp_project/src/.gitkeep

316
qdp_project/src/algorithm/operators/aggregation.h

@ -0,0 +1,316 @@
#pragma once
#include <cstdint>
#include <algorithm>
#include <immintrin.h>
#include <type_traits>
#include "vector_loader.h"
#include "const.h"
/**
* @brief Super Class for all Aggregation functions. Guards Sub Classes from having an non integral base type.
*
* @tparam T
*/
template <typename T>
class AggFunction {
static_assert(std::is_integral<T>::value, "The base type of an AggFunction must be an integral");
};
/**
* @brief Template class that implements methods used for Summation. It wraps the corresponding vector intrinsics
*
* @tparam T base datatype for the implemented methods
*/
template<typename T>
class Sum : public AggFunction<T> {
public:
static inline __m512i simd_agg(__m512i aggregator, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_add_epi32(aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_add_epi64(aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Sum is only implemented for 32 and 64 wide integers");
};
static inline __m512i simd_agg(__m512i aggregator, __mmask16 mask, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_mask_add_epi32(aggregator, mask, aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_mask_add_epi64(aggregator, mask, aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Sum is only implemented for 32 and 64 wide integers");
};
static inline T simd_reduce(__m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_reduce_add_epi32(vector);
else if constexpr (sizeof(T) == 8) return _mm512_reduce_add_epi64(vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Sum is only implemented for 32 and 64 wide integers");
};
static inline T scalar_agg(T aggregator, T scalar) { return aggregator + scalar; };
static inline __m512i zero() { return _mm512_set1_epi32(0); };
};
/**
* @brief Template class that implements methods used for Maximum determination. It wraps the corresponding vector intrinsics
*
* @tparam T base datatype for the implemented methods
*
*/
template<typename T>
class Max : public AggFunction<T> {
public:
static inline __m512i simd_agg(__m512i aggregator, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_max_epi32(aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_max_epi64(aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Max is only implemented for 32 and 64 wide integers");
}
static inline __m512i simd_agg(__m512i aggregator, __mmask16 mask, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_mask_max_epi32(aggregator, mask, aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_mask_max_epi64(aggregator, mask, aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Max is only implemented for 32 and 64 wide integers");
}
static inline T simd_reduce(__m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_reduce_max_epi32(vector);
else if constexpr (sizeof(T) == 8) return _mm512_reduce_max_epi64(vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Max is only implemented for 32 and 64 wide integers");
}
static inline T scalar_agg(T aggregator, T scalar) { return std::max(aggregator, scalar); }
static inline __m512i zero() {
if constexpr (sizeof(T) == 4) {
if constexpr (std::is_signed<T>::value) return _mm512_set1_epi32(0xFFFFFFFF);
else return _mm512_set1_epi32(0x0);
}
else if constexpr (sizeof(T) == 8) {
if constexpr (std::is_signed<T>::value) return _mm512_set1_epi32(0xFFFFFFFFFFFFFFFF);
else return _mm512_set1_epi32(0x0);
}
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Max is only implemented for 32 and 64 wide integers");
}
};
/**
* @brief Template class that implements methods used for Minimum determination. It wraps the corresponding vector intrinsics
*
* @tparam T base datatype for the implemented methods
*
*/
template<typename T>
class Min : public AggFunction<T> {
public:
static inline __m512i simd_agg(__m512i aggregator, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_min_epi32(aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_min_epi64(aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Min is only implemented for 32 and 64 wide integers");
}
static inline __m512i simd_agg(__m512i aggregator, __mmask16 mask, __m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_mask_min_epi32(aggregator, mask, aggregator, vector);
else if constexpr (sizeof(T) == 8) return _mm512_mask_min_epi64(aggregator, mask, aggregator, vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Min is only implemented for 32 and 64 wide integers");
}
static inline T simd_reduce(__m512i vector) {
if constexpr (sizeof(T) == 4) return _mm512_reduce_min_epi32(vector);
else if constexpr (sizeof(T) == 8) return _mm512_reduce_min_epi64(vector);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Min is only implemented for 32 and 64 wide integers");
}
static inline T scalar_agg(T aggregator, T scalar) { return std::min(aggregator, scalar); }
static inline __m512i zero() {
if constexpr (sizeof(T) == 4) {
if constexpr (std::is_signed<T>::value) return _mm512_set1_epi32(0xEFFFFFFF);
else return _mm512_set1_epi32(0xFFFFFFFF);
}
else if constexpr (sizeof(T) == 8) {
if constexpr (std::is_signed<T>::value) return _mm512_set1_epi32(0xEFFFFFFFFFFFFFFF);
else return _mm512_set1_epi32(0xFFFFFFFFFFFFFFFF);
}
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "Min is only implemented for 32 and 64 wide integers");
}
};
/**
* @brief Template Class that implements an aggregation operation.
*
* @tparam base_t Base type of the values for aggregation
* @tparam func
* @tparam load_mode
*/
template<typename base_t, template<typename _base_t> class func, load_mode load_mode>
class Aggregation{
public:
static_assert(std::is_same_v<base_t, uint64_t>, "Enforce unsigned 64 bit ints.");
using OP = func<base_t>;
/**
* @brief Calculates the memory maximal needed to store a chunk's processing result.
*
* @param chunk_size_b Size of the chunk in byte
* @return size_t Size of the chunk's processing result in byte
*/
static size_t result_bytes_per_chunk(size_t chunk_size_b) {
// aggregation returns a single value of type base_t
return sizeof(base_t);
}
/**
* @brief Applies the aggregation function on the chunk starting at *src* and spanning *chunk_size_b* bytes.
* The result is written to main memory.
*
* @param dest Pointer to the start of the result chunk
* @param src Pointer to the start of the source chunk
* @param chunk_size_b Size of the source chunk in bytes
* @return true When the aggregation is done
* @return false Never
*/
static bool apply (base_t *dest, base_t *src, size_t chunk_size_b) {
constexpr size_t lanes = VECTOR_SIZE<base_t>();
size_t value_count = chunk_size_b / sizeof(base_t);
__m512i agg_vec = func<base_t>::zero();
size_t i = 0;
base_t result = 0;
// stop before! running out of space
if(value_count >= lanes) {// keep in mind value_count is unsigned so if it becomes negative, it doesn't.
for(; i <= value_count - lanes; i += lanes) {
__m512i vec = Vector_Loader<base_t, load_mode>::load(src + i);
agg_vec = func<base_t>::simd_agg(agg_vec, vec);
}
result = func<base_t>::simd_reduce(agg_vec);
}
for(; i < value_count; ++i) {
result = func<base_t>::scalar_agg(result, src[i]);
}
*dest = result;
return true;
}
/**
* @brief Applies the aggregation function on the chunk starting at *src* and spanning *chunk_size_b* bytes,
* while applying the bit string stored in *masks*. The result is written to main memory.
*
* @param dest Pointer to the start of the result chunk
* @param src Pointer to the start of the source chunk
* @param masks Pointer the bitstring that marks the values that should be aggregated
* @param chunk_size_b Size of the source chunk in bytes
* @return true When the aggregation is done
* @return false Never
*/
static bool apply_masked (base_t *dest, base_t *src, uint16_t* msks, size_t chunk_size_b) {
constexpr size_t lanes = VECTOR_SIZE<base_t>();
uint8_t* masks = (uint8_t *)msks;
size_t value_count = chunk_size_b / sizeof(base_t);
__m512i agg_vec = func<base_t>::zero();
size_t i = 0;
// stop before! running out of space
if(value_count >= lanes) // keep in mind size_w is unsigned so if it becomes negative, it doesn't.
for(; i <= value_count - lanes; i += lanes) {
__m512i vec = Vector_Loader<base_t, load_mode>::load(src + i);
__mmask8 mask = _mm512_int2mask(masks[i / lanes]);
agg_vec = func<base_t>::simd_mask_agg(agg_vec, mask, vec);
}
*dest = func<base_t>::simd_reduce(agg_vec);
for(; i < value_count; ++i) {
uint8_t mask = masks[i / lanes];
if(mask & (0b1 << (i % lanes))){
*dest = func<base_t>::scalar_agg(*dest, src[i]);
}
}
return true;
}
/**
* @brief Applies the aggregation function on the chunk starting at *src* and spanning *chunk_size_b* bytes,
* while applying the bit string stored in *masks*. The values are agggegated in the register *dest* without
* clearing beforehand.
*
* NOTE! This function only works correctly if the the chunk_size_b is a multiple of 64 byte
*
* @param dest Vector register used for storing and passing the result around
* @param src Pointer to the start of the source chunk
* @param masks Pointer the bitstring that marks the values that should be aggregated
* @param chunk_size_b Size of the source chunk in bytes
* @return __m512i Vector register holding the aggregation result
*/
static __m512i apply_masked (__m512i dest, base_t *src, uint16_t* msks, size_t chunk_size_b) {
constexpr size_t lanes = VECTOR_SIZE<base_t>();
uint8_t* masks = (uint8_t*) msks;
//TODO this function does not work if value_count % lanes != 0
size_t value_count = chunk_size_b / sizeof(base_t);
size_t i = 0;
// stop before! running out of space
if(value_count >= lanes) // keep in mind size_w is unsigned so if it becomes negative, it doesn't.
for(; i <= value_count - lanes; i += lanes) {
__m512i vec = Vector_Loader<base_t, load_mode>::load(src + i);
__mmask8 mask = _mm512_int2mask(masks[i / lanes]);
dest = func<base_t>::simd_agg(dest, mask, vec);
}
return dest;
}
/**
* @brief Applies the aggregation function on the chunk starting at *src* and spanning *chunk_size_b* bytes,
* while applying two bit strings stored in *masks_0* and *masks_1*. The values are aggregated in the register
* *dest* without clearing beforehand.
*
* NOTE! This function only works correctly if the the chunk_size_b is a multiple of 64 byte
*
* @param dest Vector register used for storing and passing the result around
* @param src Pointer to the start of the source chunk
* @param masks_0 Pointer the bitstring that marks the values that should be aggregated
* @param masks_1 Pointer the bitstring that marks the values that should be aggregated
* @param chunk_size_b Size of the source chunk in bytes
* @return __m512i Vector register holding the aggregation result
*/
static __m512i apply_masked (__m512i dest, base_t *src, uint16_t* msks0, uint16_t* msks1, size_t chunk_size_b) {
constexpr size_t lanes = VECTOR_SIZE<base_t>();
uint8_t* masks0 = (uint8_t*) msks0;
uint8_t* masks1 = (uint8_t*) msks1;
//TODO this function does not work if value_count % lanes != 0
size_t value_count = chunk_size_b / sizeof(base_t);
size_t i = 0;
// stop before! running out of space
if(value_count >= lanes) // keep in mind value_count is unsigned so if it becomes negative, it doesn't.
for(; i <= value_count - lanes; i += lanes) {
__m512i vec = Vector_Loader<base_t, load_mode>::load(src + i);
__mmask8 mask0 = _mm512_int2mask(masks0[i / lanes]);
__mmask8 mask1 = _mm512_int2mask(masks1[i / lanes]);
mask0 = _kand_mask8(mask0, mask1);
dest = func<base_t>::simd_agg(dest, mask0, vec);
}
return dest;
}
/**
* @brief Reduces a vector by applying the aggregation function horizontally.
*
* @param dest Result of the horizontal aggregation
* @param src Vector as source for the horizontal aggregation
* @return true When the operation is done
* @return false Never
*/
static bool happly (base_t *dest, __m512i src) {
*dest = func<base_t>::simd_reduce(src);
return true;
}
static __m512i get_zero() {
return func<base_t>::zero();
}
};

170
qdp_project/src/algorithm/operators/filter.h

@ -0,0 +1,170 @@
#pragma once
#include<cstdint>
#include<type_traits>
#include <immintrin.h>
#include "vector_loader.h"
/**
* @brief Super Class for all Aggregation functions. Guards Sub Classes from having an non integral base type.
*
* @tparam T An integral datatype
*/
template<typename T>
class FilterFunction {
static_assert(std::is_integral<T>::value, "The base type of a FilterFunction must be an integeral.");
};
/**
* @brief Template class that implements methods used for finding values that are not equal to the compare value.
* It wraps the corresponding vector intrinsics.
*
* @tparam T base datatype for the implemented methods
*/
template<typename T>
class NEQ : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmpneq_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmpneq_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "NEQ is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar != comp; }
};
template<typename T>
class EQ : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmpeq_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmpeq_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "EQ is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar == comp; }
};
template<typename T>
class LT : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmplt_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmplt_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "LT is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar < comp; }
};
template<typename T>
class LEQ : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmple_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmple_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "LEQ is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar <= comp; }
};
template<typename T>
class GT : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmpgt_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmpgt_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "GT is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar > comp; }
};
template<typename T>
class GEQ : public FilterFunction<T> {
public:
static inline __mmask16 simd_filter(__m512i vector, __m512i comp) {
if constexpr (sizeof(T) == 4) return _mm512_cmpge_epi32_mask(vector, comp);
else if constexpr (sizeof(T) == 8) return _mm512_cmpge_epi64_mask(vector, comp);
static_assert(sizeof(T) == 4 || sizeof(T) == 8, "GEQ is only implemented for 32 and 64 wide integers");
}
static inline bool scalar_filter(T scalar, T comp) { return scalar >= comp; }
};
template<typename base_t, template<typename _base_t> class func, load_mode load_mode, bool copy>
class Filter {
public:
static_assert(std::is_same_v<base_t, uint64_t>, "We enforce 64 bit integer");
/**
* @brief Calculates the memory maximal needed to store a chunk's processing result.
*
* @param chunk_size_b Size of the chunk in byte
* @return size_t Size of the chunk's processing result in byte
*/
static size_t result_bytes_per_chunk(size_t chunk_size_b) {
// + 7 to enshure that we have enougth bytes -> / 8 -> rounds down
// if we had 17 / 8 = 2 but (17 + 7) / 8 = 3
// if we hat 16 / 8 = 2 is right, as well as, 16 + 7 / 8 = 2
return (chunk_size_b / sizeof(base_t) + 7) / 8;
}
/**
* @brief Applies the filter function on the chunk starting at *src* and spanning *chunk_size_b* bytes, while comparing with he same value every time.
* The resulting bit string is written to main memory.
*
* @param dest Pointer to the start of the result chunk
* @param src Pointer to the start of the source chunk
* @param cmp_value Comparision value to compare the values from source to
* @param chunk_size_b Size of the source chunk in bytes
* @return true When the filter operation is done
* @return false Never
*/
// we only need this impl. yet, as all filter are at the end of a pipeline
static bool apply_same (uint16_t *dst, base_t *buffer, base_t *src, base_t cmp_value, size_t chunk_size_b) {
constexpr uint32_t lanes = VECTOR_SIZE<base_t>();
uint8_t* dest = (uint8_t*) dst;
size_t value_count = chunk_size_b / sizeof(base_t);
__m512i cmp_vec = _mm512_set1_epi64(cmp_value);
size_t i = 0;
// this weird implementetion is neccessary, see analogous impl in aggregation for explaination
if(value_count > lanes) {
for(; (i < value_count - lanes); i += lanes) {
__m512i vec = Vector_Loader<base_t, load_mode>::load(src + i);
__mmask8 bitmask = func<base_t>::simd_filter(vec, cmp_vec);
uint8_t int_mask = (uint8_t) _mm512_mask2int(bitmask);
dest[i / lanes] = int_mask;
if constexpr(copy){
Vector_Loader<base_t, load_mode>::store(buffer + i, vec);
}
}
}
auto dest_pos = i / lanes;
uint8_t int_mask = 0;
for(; i < value_count; ++i) {
base_t val = src[i];
uint8_t result = func<base_t>::scalar_filter(val, cmp_value);
int_mask |= (result << (i % lanes));
if constexpr(copy){
buffer[i] = val;
}
}
dest[dest_pos] = int_mask;
return true;
}
};

240
qdp_project/src/benchmark/DIMES_benchmark.cpp

@ -0,0 +1,240 @@
#include <atomic>
#include <barrier>
#include <chrono>
#include <condition_variable>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <future>
#include <iostream>
#include <limits>
#include <list>
#include <mutex>
#include <queue>
#include <thread>
#include <tuple>
#include <utility>
#include <numa.h>
#ifndef THREAD_GROUP_MULTIPLIER
#define THREAD_GROUP_MULTIPLIER 8
#endif
#ifndef QUERY
#define QUERY 1
#endif
#ifndef BARRIER_MODE
#define BARRIER_MODE "global"
#endif
#ifndef BUFFER_LIMIT
#define BUFFER_LIMIT 1
#endif
#include "const.h"
#include "file_output.h"
#include "array_utils.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "cpu_set_utils.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/DIMES_scan_filter_pipe.h"
#include "aggregation.h"
#include "filter.h"
using base_t = uint64_t;
base_t sum_check(base_t compare_value, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
base_t sum_check_complex(base_t compare_value_a, base_t compare_value_b, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value_a && row_B[i] < compare_value_b) * row_B[i];
}
return sum;
}
int main(int argc, char** argv) {
// set constants
const size_t workload_b = 4_GiB;
const base_t compare_value_a = 50;
const base_t compare_value_b = 42;
constexpr bool simple_query = (QUERY == 1);
const size_t thread_count = 6;
std::ofstream out_file;
out_file.open("../results/dimes_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
"_tc-" + std::to_string(thread_count * THREAD_GROUP_MULTIPLIER) + ".csv");
// set benchmark parameter
Linear_Int_Range<uint32_t, 0, 10, 1> run("run");
Exp_Int_Range<size_t, 1_MiB, 8_MiB + 1, 2> chunk_size("chunk_size");
Range<NewPMode, DRAM_base, new_mode_manager, new_mode_manager> mode("mode");
uint32_t remote_node = 3;
uint32_t remote_node_2 = 2;
uint32_t local_node = 10;
print_to_file(out_file, generateHead(run, chunk_size, mode), "thread_group", "time",
#ifdef THREAD_TIMINGS
"scan_a", "scan_b", "aggr_j",
#endif
#ifdef BARRIER_TIMINGS
"wait_scan_a", "wait_scan_b", "wait_aggr_j",
#endif
"result");
/*** alloc data and buffers ************************************************/
base_t* data_a = (base_t*) numa_alloc_onnode(workload_b, remote_node);
base_t* data_b = (base_t*) numa_alloc_onnode(workload_b, remote_node_2);
base_t* data_a_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
base_t* data_b_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
fill_mt<base_t>(data_a, workload_b, 0, 100, 42);
fill_mt<base_t>(data_b, workload_b, 0, 100, 420);
std::memcpy(data_a_hbm, data_a, workload_b);
std::memcpy(data_b_hbm, data_b, workload_b);
base_t* results = (base_t*) numa_alloc_onnode(THREAD_GROUP_MULTIPLIER * thread_count * sizeof(base_t), remote_node);
std::ofstream check_file;
check_file.open("../results/dimes_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
"_tc-" + std::to_string(thread_count * THREAD_GROUP_MULTIPLIER) + ".checksum");
if constexpr (QUERY == 1) {
//calculate simple checksum if QUERY == 1 -> simple query is applied
check_file << sum_check(compare_value_a, data_a, data_b, workload_b);
} else {
check_file << sum_check_complex(compare_value_a, compare_value_b, data_a, data_b, workload_b);
}
check_file.close();
std::string iteration("init");
Query_Wrapper<base_t, simple_query>* qw = nullptr;
while(iteration != "false") {
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
if(iteration != "run") {
if(qw != nullptr) {
delete qw;
}
std::cout << "Changing to mode " << mode.current << " chunksize " << chunk_size.current << std::endl;
uint8_t tc_filter = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_A);
uint8_t tc_copy = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_B);
uint8_t tc_agg = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, AGGR_J);
switch(mode.current) {
case NewPMode::DRAM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::HBM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a_hbm, data_b_hbm, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Mixed_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b_hbm, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Prefetch:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, false);
break;
}
}
qw->ready_future = &ready_future;
qw->clear_buffers();
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
std::vector<std::thread> filter_pool;
std::vector<std::thread> copy_pool;
std::vector<std::thread> agg_pool;
uint8_t tc_filter = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_A);
uint8_t tc_copy = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_B);
uint8_t tc_agg = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, AGGR_J);
int thread_id = 0;
// std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(28, 42), std::make_pair(84, 98)}; // node 2 heacboehm II
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(32, 48), std::make_pair(96, 112)}; // node 2 heacboehm
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(24, 36), std::make_pair(120, 132)}; // node 2 sapphire rapids
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(24, 48)}; // node 2+3 sapphire rapids
std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(0, 48)}; // node 0-3 sapphire rapids
for(uint32_t gid = 0; gid < THREAD_GROUP_MULTIPLIER; ++gid) {
for(uint32_t tid = 0; tid < tc_filter; ++tid) {
filter_pool.emplace_back(filter_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(filter_pool.back(), thread_id++, pinning_ranges);
}
// if tc_copy == 0 this loop is skipped
for(uint32_t tid = 0; tid < tc_copy; ++tid) {
copy_pool.emplace_back(copy_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(copy_pool.back(), thread_id++, pinning_ranges);
}
for(uint32_t tid = 0; tid < tc_agg; ++tid) {
agg_pool.emplace_back(aggregation_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(agg_pool.back(), thread_id++, pinning_ranges);
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : filter_pool) { t.join(); }
for(std::thread& t : copy_pool) { t.join(); }
for(std::thread& t : agg_pool) { t.join(); }
Aggregation<base_t, Sum, load_mode::Aligned>::apply(results, results, sizeof(base_t) * tc_agg * THREAD_GROUP_MULTIPLIER);
auto end = std::chrono::steady_clock::now();
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000;
uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
double seconds = (double)(nanos) / nanos_per_second;
print_to_file(out_file, run, chunk_size, new_mode_manager::string(mode.current), THREAD_GROUP_MULTIPLIER, seconds,
#ifdef THREAD_TIMINGS
qw->trt->summarize_time(0), qw->trt->summarize_time(1), qw->trt->summarize_time(2),
#endif
#ifdef BARRIER_TIMINGS
qw->bt->summarize_time(0), qw->bt->summarize_time(1), qw->bt->summarize_time(2),
#endif
results[0]);
iteration = IterateOnce(run, chunk_size, mode);
}
numa_free(data_b_hbm, workload_b);
numa_free(data_a, workload_b);
numa_free(data_b, workload_b);
numa_free(results, THREAD_GROUP_MULTIPLIER * thread_count * sizeof(base_t));
}

260
qdp_project/src/benchmark/DIMES_cores_benchmark.cpp

@ -0,0 +1,260 @@
#include <atomic>
#include <barrier>
#include <chrono>
#include <condition_variable>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <future>
#include <iostream>
#include <limits>
#include <list>
#include <mutex>
#include <queue>
#include <thread>
#include <tuple>
#include <utility>
#include <numa.h>
#ifndef QUERY
#define QUERY 1
#endif
#ifndef BARRIER_MODE
#define BARRIER_MODE "global"
#endif
#define BUFFER_LIMIT 0
#include "const.h"
#include "file_output.h"
#include "array_utils.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "cpu_set_utils.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/DIMES_scan_filter_pipe.h"
#include "aggregation.h"
#include "filter.h"
using base_t = uint64_t;
base_t sum_check(base_t compare_value, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
base_t sum_check_complex(base_t compare_value_a, base_t compare_value_b, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value_a && row_B[i] < compare_value_b) * row_B[i];
}
return sum;
}
int main(int argc, char** argv) {
// set constants
const size_t workload_b = 4_GiB;
const size_t chunk_size = 2_MiB;
const base_t compare_value_a = 50;
const base_t compare_value_b = 42;
constexpr bool simple_query = (QUERY == 1);
std::ofstream out_file;
out_file.open("../results/dimes_cores_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
".csv");
// set benchmark parameter
Linear_Int_Range<uint32_t, 0, 3, 1> run("run");
Exp_Int_Range<uint32_t, 1, 4+1, 2> scan_a_thread("scan_a_tc");
Exp_Int_Range<uint32_t, 1, 4+1, 2> scan_b_thread("scan_b_tc");
Exp_Int_Range<uint32_t, 1, 4+1, 2> aggr_j_thread("aggr_j_tc");
Linear_Int_Range<uint32_t, 1, 16+1, 1> thread_group_count("thread_group_c");
Range<NewPMode, DRAM_base, new_mode_manager, new_mode_manager> mode("mode");
uint32_t remote_node = 1;
uint32_t remote_node_2 = 0;//on heacboehm II: node 0 is two hops away from node 2 -> prefetching is more beneficial
uint32_t local_node = 2;
print_to_file(out_file, generateHead(run, thread_group_count, mode, scan_a_thread, scan_b_thread, aggr_j_thread),
"time",
#ifdef THREAD_TIMINGS
"scan_a", "scan_b", "aggr_j",
#endif
#ifdef BARRIER_TIMINGS
"wait_scan_a", "wait_scan_b", "wait_aggr_j",
#endif
"result");
/*** alloc data and buffers ************************************************/
base_t* data_a = (base_t*) numa_alloc_onnode(workload_b, remote_node);
base_t* data_b = (base_t*) numa_alloc_onnode(workload_b, remote_node_2);
base_t* data_a_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
base_t* data_b_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
fill_mt<base_t>(data_a, workload_b, 0, 100, 42);
fill_mt<base_t>(data_b, workload_b, 0, 100, 420);
std::memcpy(data_a_hbm, data_a, workload_b);
std::memcpy(data_b_hbm, data_b, workload_b);
base_t* results = (base_t*) numa_alloc_onnode(thread_group_count.max * aggr_j_thread.max * sizeof(base_t), remote_node);
std::ofstream check_file;
check_file.open("../results/dimes_cores_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
".checksum");
if constexpr (QUERY == 1) {
//calculate simple checksum if QUERY == 1 -> simple query is applied
check_file << sum_check(compare_value_a, data_a, data_b, workload_b);
} else {
check_file << sum_check_complex(compare_value_a, compare_value_b, data_a, data_b, workload_b);
}
check_file.close();
std::string iteration("init");
Query_Wrapper<base_t, simple_query>* qw = nullptr;
while(iteration != "false") {
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
// skipping iteration through scan_b_thread while not used
while(simple_query && mode.current != NewPMode::Prefetch && scan_b_thread.current != 1) {
iteration = IterateOnce(run, thread_group_count, mode, scan_a_thread, scan_b_thread, aggr_j_thread);
}
if(iteration != "run") {
std::cout << "Changing to mode " << mode.current
<< " thread_group_count " << thread_group_count.current
<< " thread_ratio " << scan_a_thread.current <<":"<< scan_b_thread.current <<":"<< aggr_j_thread.current
<< std::endl;
if(qw != nullptr) {
if (iteration == thread_group_count.label) {
} else {
delete qw;
uint32_t sat = scan_a_thread.current;
uint32_t sbt = simple_query && mode.current != NewPMode::Prefetch ? 0 : scan_b_thread.current;
uint32_t ajt = aggr_j_thread.current;
switch(mode.current) {
case NewPMode::DRAM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size, data_a, data_b, results, local_node, remote_node,
sat, sbt, ajt, mode.current, thread_group_count.current, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::HBM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size, data_a_hbm, data_b_hbm, results, local_node, remote_node,
sat, sbt, ajt, mode.current, thread_group_count.current, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Mixed_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size, data_a, data_b_hbm, results, local_node, remote_node,
sat, sbt, ajt, mode.current, thread_group_count.current, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Prefetch:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size, data_a, data_b, results, local_node, remote_node,
sat, sbt, ajt, mode.current, thread_group_count.current, (base_t) 50, (base_t) 42, false);
break;
}
}
}
}
qw->ready_future = &ready_future;
qw->clear_buffers();
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
std::vector<std::thread> filter_pool;
std::vector<std::thread> copy_pool;
std::vector<std::thread> agg_pool;
uint8_t tc_filter = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_A);
uint8_t tc_copy = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_B);
uint8_t tc_agg = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, AGGR_J);
int thread_id = 0;
// std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(28, 42), std::make_pair(84, 98)}; // node 2 heacboehm II
std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(32, 48), std::make_pair(96, 112)}; // node 2 heacboehm
for(uint32_t gid = 0; gid < thread_group_count.current; ++gid) {
for(uint32_t tid = 0; tid < tc_filter; ++tid) {
filter_pool.emplace_back(filter_lambda, gid, thread_group_count.current, tid);
pin_thread_in_range(filter_pool.back(), thread_id++, pinning_ranges);
}
// if tc_copy == 0 this loop is skipped
for(uint32_t tid = 0; tid < tc_copy; ++tid) {
copy_pool.emplace_back(copy_lambda, gid, thread_group_count.current, tid);
pin_thread_in_range(copy_pool.back(), thread_id++, pinning_ranges);
}
for(uint32_t tid = 0; tid < tc_agg; ++tid) {
agg_pool.emplace_back(aggregation_lambda, gid, thread_group_count.current, tid);
pin_thread_in_range(agg_pool.back(), thread_id++, pinning_ranges);
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : filter_pool) { t.join(); }
for(std::thread& t : copy_pool) { t.join(); }
for(std::thread& t : agg_pool) { t.join(); }
Aggregation<base_t, Sum, load_mode::Aligned>::apply(results, results, sizeof(base_t) * tc_agg * thread_group_count.current);
auto end = std::chrono::steady_clock::now();
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000;
uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
double seconds = (double)(nanos) / nanos_per_second;
print_to_file(out_file, generateHead(run, thread_group_count, mode, scan_a_thread, scan_b_thread, aggr_j_thread),
"time",
#ifdef THREAD_TIMINGS
"scan_a", "scan_b", "aggr_j",
#endif
#ifdef BARRIER_TIMINGS
"wait_scan_a", "wait_scan_b", "wait_aggr_j",
#endif
"result");
print_to_file(out_file, run, thread_group_count.current, new_mode_manager::string(mode.current), scan_a_thread,
(simple_query && mode.current != NewPMode::Prefetch ? 0 : scan_b_thread.current),
aggr_j_thread, seconds,
#ifdef THREAD_TIMINGS
qw->trt->summarize_time(0), qw->trt->summarize_time(1), qw->trt->summarize_time(2),
#endif
#ifdef BARRIER_TIMINGS
qw->bt->summarize_time(0), qw->bt->summarize_time(1), qw->bt->summarize_time(2),
#endif
results[0]);
iteration = IterateOnce(run, thread_group_count, mode, scan_a_thread, scan_b_thread, aggr_j_thread);
}
numa_free(data_b_hbm, workload_b);
numa_free(data_a, workload_b);
numa_free(data_b, workload_b);
numa_free(results, thread_group_count.max * aggr_j_thread.max * sizeof(base_t));
}

289
qdp_project/src/benchmark/MAX_benchmark.cpp

@ -0,0 +1,289 @@
#include <atomic>
#include <barrier>
#include <chrono>
#include <condition_variable>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <future>
#include <iostream>
#include <limits>
#include <list>
#include <mutex>
#include <queue>
#include <thread>
#include <tuple>
#include <utility>
#include <numa.h>
#ifndef THREAD_GROUP_MULTIPLIER
#define THREAD_GROUP_MULTIPLIER 2
#endif
#ifndef QUERY
#define QUERY 1
#endif
#ifndef BARRIER_MODE
#define BARRIER_MODE "global"
#endif
#ifndef BUFFER_LIMIT
#define BUFFER_LIMIT 1
#endif
#ifndef PINNING
#define PINNING 1
#endif
#ifndef PCM_M
#define PCM_M 0
#endif
#if PCM_M == 1
#include "pcm.h"
#endif
#include "const.h"
#include "file_output.h"
#include "array_utils.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "measurement_utils.h"
#include "cpu_set_utils.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/MAX_scan_filter_pipe.h"
#include "aggregation.h"
#include "filter.h"
using base_t = uint64_t;
base_t sum_check(base_t compare_value, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
base_t sum_check_complex(base_t compare_value_a, base_t compare_value_b, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value_a && row_B[i] < compare_value_b) * row_B[i];
}
return sum;
}
int main(int argc, char** argv) {
#if PCM == 1
pcm::PCM *pcm = pcm::PCM::getInstance();
//and check for errors
auto error_code = pcm->program();
if(error_code != pcm::PCM::Success) {
std::cerr << "PCM couldn't start" << std::endl;
std::cerr << "Error code: " << error_code << std::endl;
std::cerr << "Try to execute 'sudo modprobe msr' and execute this program with root privigeges.";
return 1;
}
#endif
// set constants
const size_t workload_b = 2_GiB;
const base_t compare_value_a = 50;
const base_t compare_value_b = 42;
constexpr bool simple_query = (QUERY == 1);
const size_t thread_count = 6;
std::ofstream out_file;
out_file.open("../results/max_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
"_tc-" + std::to_string(thread_count * THREAD_GROUP_MULTIPLIER) + "1MiB-2MiB.csv");
// set benchmark parameter
Linear_Int_Range<uint32_t, 0, 30, 1> run("run");
constexpr size_t chunk_min = 1_MiB; constexpr size_t chunk_max = 8_MiB + 1; constexpr size_t chunk_incr = 128_kiB;
Linear_Int_Range<size_t, chunk_min, chunk_max, chunk_incr> chunk_size("chunk_size");
Range<NewPMode, DRAM_base, new_mode_manager, new_mode_manager> mode("mode");
uint32_t remote_node = 2;
uint32_t remote_node_2 = 2;
uint32_t local_node = 10;
/*uint32_t remote_node = 6;
uint32_t remote_node_2 = 6;
uint32_t local_node = 2;*/
print_to_file(out_file, generateHead(run, chunk_size, mode), "thread_group", "time",
#ifdef THREAD_TIMINGS
"scan_a", "scan_b", "aggr_j",
#endif
#ifdef BARRIER_TIMINGS
"wait_scan_a", "wait_scan_b", "wait_aggr_j",
#endif
#if PCM == 1
pcm_value_collector::getHead("scan_a"),
pcm_value_collector::getHead("scan_b"),
pcm_value_collector::getHead("aggr_j"),
#endif
"result");
/*** alloc data and buffers ************************************************/
base_t* data_a = (base_t*) numa_alloc_onnode(workload_b, remote_node);
base_t* data_b = (base_t*) numa_alloc_onnode(workload_b, remote_node_2);
base_t* data_a_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
base_t* data_b_hbm = (base_t*) numa_alloc_onnode(workload_b, local_node);
fill_mt<base_t>(data_a, workload_b, 0, 100, 42);
fill_mt<base_t>(data_b, workload_b, 0, 100, 420);
std::memcpy(data_a_hbm, data_a, workload_b);
std::memcpy(data_b_hbm, data_b, workload_b);
base_t* results = (base_t*) numa_alloc_onnode(THREAD_GROUP_MULTIPLIER * thread_count * sizeof(base_t), remote_node);
std::ofstream check_file;
check_file.open("../results/max_"
"q-" + (std::string)(simple_query == true ? "simple" : "complex") +
"_bm-" + (std::string) BARRIER_MODE +
"_bl-" + (std::string)(BUFFER_LIMIT == 1 ? "limited" : "unlimited") +
"_tc-" + std::to_string(thread_count * THREAD_GROUP_MULTIPLIER) + ".checksum");
if constexpr (QUERY == 1) {
//calculate simple checksum if QUERY == 1 -> simple query is applied
check_file << sum_check(compare_value_a, data_a, data_b, workload_b);
} else {
check_file << sum_check_complex(compare_value_a, compare_value_b, data_a, data_b, workload_b);
}
check_file.close();
std::string iteration("init");
Query_Wrapper<base_t, simple_query>* qw = nullptr;
while(iteration != "false") {
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
if(iteration != "run") {
if(qw != nullptr) {
delete qw;
}
uint8_t tc_filter = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_A);
uint8_t tc_copy = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_B);
uint8_t tc_agg = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, AGGR_J);
switch(mode.current) {
case NewPMode::DRAM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::HBM_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a_hbm, data_b_hbm, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Mixed_base:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b_hbm, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, true);
break;
case NewPMode::Prefetch:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
tc_filter, tc_copy, tc_agg, mode.current, THREAD_GROUP_MULTIPLIER, (base_t) 50, (base_t) 42, false);
break;
}
}
qw->ready_future = &ready_future;
qw->clear_buffers();
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
std::vector<std::thread> filter_pool;
std::vector<std::thread> copy_pool;
std::vector<std::thread> agg_pool;
uint8_t tc_filter = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_A);
uint8_t tc_copy = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, SCAN_B);
uint8_t tc_agg = new_mode_manager::thread_count(simple_query ? SIMPLE_Q : COMPLEX_Q, mode.current, AGGR_J);
int thread_id = 0;
// std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(28, 42), std::make_pair(84, 98)}; // node 2 heacboehm II
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(32, 48), std::make_pair(96, 112)}; // node 2 heacboehm
std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(24, 36), std::make_pair(120, 132)}; // node 2 sapphire rapids
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(24, 48)}; // node 2+3 sapphire rapids
//std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(0, 48)}; // node 0-3 sapphire rapids
for(uint32_t gid = 0; gid < THREAD_GROUP_MULTIPLIER; ++gid) {
for(uint32_t tid = 0; tid < tc_filter; ++tid) {
filter_pool.emplace_back(filter_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
#if PINNING
pin_thread_in_range(filter_pool.back(), thread_id++, pinning_ranges);
#else
pin_thread_in_range(filter_pool.back(), pinning_ranges);
#endif
}
// if tc_copy == 0 this loop is skipped
for(uint32_t tid = 0; tid < tc_copy; ++tid) {
copy_pool.emplace_back(copy_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
#if PINNING
pin_thread_in_range(copy_pool.back(), thread_id++, pinning_ranges);
#else
pin_thread_in_range(copy_pool.back(), pinning_ranges);
#endif
}
for(uint32_t tid = 0; tid < tc_agg; ++tid) {
agg_pool.emplace_back(aggregation_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
#if PINNING
pin_thread_in_range(agg_pool.back(), thread_id++, pinning_ranges);
#else
pin_thread_in_range(agg_pool.back(), pinning_ranges);
#endif
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : filter_pool) { t.join(); }
for(std::thread& t : copy_pool) { t.join(); }
for(std::thread& t : agg_pool) { t.join(); }
Aggregation<base_t, Sum, load_mode::Aligned>::apply(results, results, sizeof(base_t) * tc_agg * THREAD_GROUP_MULTIPLIER);
auto end = std::chrono::steady_clock::now();
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000;
uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
double seconds = (double)(nanos) / nanos_per_second;
print_to_file(out_file, run, chunk_size, new_mode_manager::string(mode.current), THREAD_GROUP_MULTIPLIER, seconds,
#ifdef THREAD_TIMINGS
qw->trt->summarize_time(0), qw->trt->summarize_time(1), qw->trt->summarize_time(2),
#endif
#ifdef BARRIER_TIMINGS
qw->bt->summarize_time(0), qw->bt->summarize_time(1), qw->bt->summarize_time(2),
#endif
#if PCM == 1
qw->pvc->summarize_as_string("scan_a"),
qw->pvc->summarize_as_string("scan_b"),
qw->pvc->summarize_as_string("aggr_j"),
#endif
results[0]);
iteration = IterateOnce(run, chunk_size, mode);
}
numa_free(data_b_hbm, workload_b);
numa_free(data_a, workload_b);
numa_free(data_b, workload_b);
numa_free(results, THREAD_GROUP_MULTIPLIER * thread_count * sizeof(base_t));
}

147
qdp_project/src/benchmark/QDP_minimal.h

@ -0,0 +1,147 @@
#include <chrono>
#include <iostream>
#include <thread>
#include <future>
#include <numa.h>
#include "const.h"
#include "array_utils.h"
#include "cpu_set_utils.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/MAX_scan_filter_pipe.h"
#include "aggregation.h"
using base_t = uint64_t;
// calculate the checksum for the simple query
base_t sum_check(base_t compare_value, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
// calculate the checksum for the complex query
base_t sum_check_complex(base_t compare_value_a, base_t compare_value_b, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value_a && row_B[i] < compare_value_b) * row_B[i];
}
return sum;
}
class QDP_minimal {
private:
// values used for comparisons in the filter operations
const base_t compare_value_a = 50;
const base_t compare_value_b = 42;
// define, which numa nodes to use
// Xeon Max: node 0-7 DRAM and 8-15 HBM
// if the nodes are changed, the pinning ranges in run should be adjusted accordingly too
uint32_t dram_node = 2;
uint32_t dram_node_2 = 2;
uint32_t hbm_node = 10;
public:
// results of running qdp, set by run()
base_t result;
base_t checksum;
double exec_time;
// run qdp
void run(const size_t workload_b, size_t chunk_size, uint8_t tc_filter, uint8_t tc_copy, uint8_t tc_agg){
// allocate data
base_t* data_a = (base_t*) numa_alloc_onnode(workload_b, dram_node);
base_t* data_b = (base_t*) numa_alloc_onnode(workload_b, dram_node_2);
base_t* results = (base_t*) numa_alloc_onnode(THREAD_GROUP_MULTIPLIER * tc_agg * sizeof(base_t), dram_node);
// fill the memory with acutal values
fill_mt<base_t>(data_a, workload_b, 0, 100, 42);
fill_mt<base_t>(data_b, workload_b, 0, 100, 420);
// run qdp
run(data_a, data_b, results, workload_b, chunk_size, tc_filter, tc_copy, tc_agg);
// free the allocated memory
numa_free(data_a, workload_b);
numa_free(data_b, workload_b);
numa_free(results, THREAD_GROUP_MULTIPLIER * tc_agg * sizeof(base_t));
}
// run qdp, work on provided memory pointers to enable memory reuse across multiple runs
void run(base_t* data_a, base_t* data_b, base_t* results, const size_t workload_b, size_t chunk_size, uint8_t tc_filter, uint8_t tc_copy, uint8_t tc_agg){
constexpr bool simple_query = (QUERY == 1);
// sync objects
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
// create the query wrapper, that is managing the to-be-used threads
Query_Wrapper<base_t, simple_query>* qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size, data_a, data_b, results, hbm_node, dram_node,
tc_filter, tc_copy, tc_agg, NewPMode::Prefetch, THREAD_GROUP_MULTIPLIER, compare_value_a, compare_value_b, false);
// clear buffers to make sure, that they have been written and are fully mapped before running qdp
qw->clear_buffers();
// creating lambdas for executing filter (scan_a), copy (scan_b), and aggregation tasks on the query wrapper
// passing gid (group id), gcnt (group count) and tid (thread id)
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
// creating thread pools, holding all used threads
std::vector<std::thread> filter_pool;
std::vector<std::thread> copy_pool;
std::vector<std::thread> agg_pool;
int thread_id = 0;
// cpus on node 2 (for sapphire rapids), that the threads should be executed on
std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(24, 36), std::make_pair(120, 132)};
// create all threads for all thread groups and for every task (copy, filter, aggregation), according their specific theadcount
for(uint32_t gid = 0; gid < THREAD_GROUP_MULTIPLIER; ++gid) {
for(uint32_t tid = 0; tid < tc_filter; ++tid) {
filter_pool.emplace_back(filter_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(filter_pool.back(), thread_id++, pinning_ranges);
}
for(uint32_t tid = 0; tid < tc_copy; ++tid) {
copy_pool.emplace_back(copy_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(copy_pool.back(), thread_id++, pinning_ranges);
}
for(uint32_t tid = 0; tid < tc_agg; ++tid) {
agg_pool.emplace_back(aggregation_lambda, gid, THREAD_GROUP_MULTIPLIER, tid);
pin_thread_in_range(agg_pool.back(), thread_id++, pinning_ranges);
}
}
// start the clock
auto start = std::chrono::steady_clock::now();
// set value to the promise, to signal the waiting threads, that they can start now
p.set_value();
// wait for all thread to be finished
for(std::thread& t : filter_pool) { t.join(); }
for(std::thread& t : copy_pool) { t.join(); }
for(std::thread& t : agg_pool) { t.join(); }
// sum up the results of all the aggregation threads to get a final result
Aggregation<base_t, Sum, load_mode::Aligned>::apply(&result, results, sizeof(base_t) * tc_agg * THREAD_GROUP_MULTIPLIER);
auto end = std::chrono::steady_clock::now();
// get the overall execution time in seconds
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000;
uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
exec_time = (double)(nanos) / nanos_per_second;
// calculate the checksum according to the used query
if constexpr (QUERY == 1) {
// QUERY == 1 -> simple query is applied
checksum = sum_check(compare_value_a, data_a, data_b, workload_b);
} else {
checksum = sum_check_complex(compare_value_a, compare_value_b, data_a, data_b, workload_b);
}
delete qw;
}
};

149
qdp_project/src/benchmark/doubly_filtered_agg.cpp

@ -0,0 +1,149 @@
#include <cstring>
#include <fstream>
#include <future>
#include <iostream>
#include <string>
#include <thread>
#include <vector>
#include <numa.h>
#include "aggregation.h"
#include "array_utils.h"
#include "cpu_set_utils.h"
#include "file_output.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/scan_filter_pipe.h"
int main () {
using base_t = uint64_t;
const size_t workload = 2_GiB;
const char filename[256] = "../results/doubly_filtered_results_stronger_affinity_.csv";
const uint32_t numa_local = 2;
const uint32_t numa_remote = 3;
Linear_Int_Range<uint32_t, 1, 6, 1> thread_group("thread_groups");
Exp_Int_Range<uint32_t, 1, 5, 2> thread_count_filter("thread_cnt_filter");
Exp_Int_Range<uint32_t, 1, 5, 2> thread_count_filter_copy("thread_cnt_filter_copy");
Exp_Int_Range<uint32_t, 1, 5, 2> thread_count_aggregation("thread_cnt_agg");
Linear_Int_Range<uint32_t, 0, 30, 1> run("run");
Range<PMode, no_copy, mode_manager, mode_manager> mode("mode");
Exp_Int_Range<size_t, 1_MiB, 8_MiB + 1, 2> chunk_size("chunk_size");
std::ofstream out_file;
out_file.open(filename);
print_to_file(out_file, generateHead(run, chunk_size, mode, thread_count_filter, thread_count_filter_copy,
thread_count_aggregation, thread_group), "time", "scan_a", "scan_b", "aggr_j", "wait_aggr", "results");
base_t* data_a = (base_t*) numa_alloc_onnode(workload, numa_remote);
base_t* data_b = (base_t*) numa_alloc_onnode(workload, numa_remote);
base_t* data_b_hbm = (base_t*) numa_alloc_onnode(workload, numa_local);
fill_mt<base_t>(data_a, workload, 0, 100, 42);
fill_mt<base_t>(data_b, workload, 0, 100, 420);
std::memcpy(data_b_hbm, data_b, workload);
base_t* result = (base_t*) numa_alloc_onnode(thread_group.max * thread_count_aggregation.max * sizeof(base_t),
numa_remote);
std::string iteration("init");
Query_Wrapper<base_t, false>* qw = nullptr;
while(iteration != "false") {
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
if(iteration != "run") {
if(qw != nullptr) {
delete qw;
}
switch(mode.current) {
case PMode::expl_copy:
qw = new Query_Wrapper<base_t, false>(&ready_future, workload, chunk_size.current, data_a, data_b, result, numa_local, numa_remote,
thread_count_filter.current, thread_count_filter_copy.current, thread_count_aggregation.current,
mode.current, thread_group.current, (base_t) 50, (base_t) 42, false);
break;
case PMode::no_copy:
qw = new Query_Wrapper<base_t, false>(&ready_future, workload, chunk_size.current, data_a, data_b, result, numa_local, numa_remote,
thread_count_filter.current, thread_count_filter_copy.current, thread_count_aggregation.current,
mode.current, thread_group.current, (base_t) 50, (base_t) 42, true);
break;
case PMode::hbm:
qw = new Query_Wrapper<base_t, false>(&ready_future, workload, chunk_size.current, data_a, data_b_hbm, result, numa_local, numa_remote,
thread_count_filter.current, thread_count_filter_copy.current, thread_count_aggregation.current,
mode.current, thread_group.current, (base_t) 50, (base_t) 42, true);
break;
}
}
qw->ready_future = &ready_future;
qw->clear_buffers();
// todo create threads depending on mode
std::vector<std::thread> thread_pool;
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto filter_copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
/* Intel Xeon Gold 6130 // todo implement different for 5120 -> fewer cpus
node 0 cpus: 0-15 64- 79
node 1 cpus: 16-31 80- 95
node 2 cpus: 32-47 96-111
node 3 cpus: 48-63 112-127
*/
int thread_id = 0;
std::vector<std::pair<int, int>> range {std::make_pair(0, 16), std::make_pair(64, 80)};
for(uint32_t gid = 0; gid < thread_group.current; ++gid) {
for(uint32_t tid = 0; tid < thread_count_filter.current; ++tid) {
thread_pool.emplace_back(filter_lambda, gid, thread_group.current, tid);
pin_thread_in_range(thread_pool.back(), thread_id++, range);
}
for(uint32_t tid = 0; tid < thread_count_filter_copy.current; ++tid) {
thread_pool.emplace_back(filter_copy_lambda, gid, thread_group.current, tid);
pin_thread_in_range(thread_pool.back(), thread_id++, range);
}
for(uint32_t tid = 0; tid < thread_count_aggregation.current; ++tid) {
thread_pool.emplace_back(aggregation_lambda, gid, thread_group.current, tid);
pin_thread_in_range(thread_pool.back(), thread_id++, range);
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
// wait for every thread to join
for(std::thread& t : thread_pool) t.join();
// aggregate all partial results
Aggregation<base_t, Sum, load_mode::Aligned>::apply(result, result,
sizeof(base_t) * thread_count_aggregation.current * thread_group.current);
auto end = std::chrono::steady_clock::now();
double duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end-start).count() / (double)1000000000;
//TODO add mode
print_to_file(out_file, run, chunk_size, mode_manager::string(mode.current), thread_count_filter,
thread_count_filter_copy, thread_count_aggregation, thread_group, duration,
qw->trt->summarize_time(0), qw->trt->summarize_time(1),
qw->trt->summarize_time(2), qw->trt->summarize_time(3), *result);
iteration = IterateOnce(run, chunk_size, mode, thread_count_filter, thread_count_filter_copy, thread_count_aggregation, thread_group);
}
auto end = std::chrono::system_clock::now();
std::time_t end_time = std::chrono::system_clock::to_time_t(end);
std::cout << "finished computation at " << std::ctime(&end_time) << std::endl;
print_to_file(out_file, std::ctime(&end_time));
}

184
qdp_project/src/benchmark/filter_aggregate_pipeline.cpp

@ -0,0 +1,184 @@
#include <atomic>
#include <barrier>
#include <chrono>
#include <condition_variable>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <future>
#include <iostream>
#include <limits>
#include <list>
#include <mutex>
#include <queue>
#include <thread>
#include <tuple>
#include <utility>
#include <numa.h>
#include "const.h"
#include "file_output.h"
#include "array_utils.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "cpu_set_utils.h"
#include "iterable_range.h"
#include "memory_literals.h"
#include "pipelines/scan_filter_pipe.h"
#include "aggregation.h"
#include "filter.h"
using base_t = uint64_t;
base_t sum_check(base_t compare_value, base_t* row_A, base_t* row_B, size_t row_size) {
base_t sum = 0;
for(int i = 0; i < row_size / sizeof(base_t); ++i) {
sum += (row_A[i] < compare_value) * row_B[i];
}
return sum;
}
int main(int argc, char** argv) {
size_t workload_b = 2_GiB;
std::ofstream out_file;
out_file.open("filter_aggreagate_pipe_bm_" + (std::string) BARRIER_MODE + ".csv");
Linear_Int_Range<uint32_t, 1, 7, 1> thread_group("thread_groups");
Linear_Int_Range<uint32_t, 0, 10, 1> run("run");
Exp_Int_Range<size_t, 1_MiB, 8_MiB + 1, 2> chunk_size("chunk_size");
Linear_Int_Range<uint32_t, 1, 2, 1> thread_count_filter("thread_cnt_filter");
Linear_Int_Range<uint32_t, 2, 3, 1> thread_count_copy("thread_cnt_copy");
Linear_Int_Range<uint32_t, 1, 2, 1> thread_count_aggregation("thread_cnt_agg");
Range<PMode, no_copy, mode_manager, mode_manager> mode("mode");
uint32_t remote_node = 2;
uint32_t remote_node_2 = 2;
uint32_t local_node = 10;
print_to_file(out_file, generateHead(run, chunk_size, mode, thread_count_filter, thread_count_copy,
thread_count_aggregation, thread_group), "time",
#ifdef THREAD_TIMINGS
"scan_a", "scan_b", "aggr_j",
#endif
#ifdef BARRIER_TIMINGS
"wait_scan_a", "wait_scan_b", "wait_aggr_j",
#endif
"result");
/*** alloc data and buffers ************************************************/
base_t* data_a = (base_t*) numa_alloc_onnode(workload_b, remote_node);
base_t* data_b = (base_t*) numa_alloc_onnode(workload_b, remote_node_2);
base_t* data_b_hbm = (base_t *) numa_alloc_onnode(workload_b, local_node);
fill_mt<base_t>(data_a, workload_b, 0, 100, 42);
fill_mt<base_t>(data_b, workload_b, 0, 100, 420);
std::memcpy(data_b_hbm, data_b, workload_b);
base_t* results = (base_t*) numa_alloc_onnode(thread_group.max * thread_count_aggregation.max * sizeof(base_t), remote_node);
std::string iteration("init");
const bool simple_query = true;
Query_Wrapper<base_t, simple_query>* qw = nullptr;
while(iteration != "false") {
base_t compare_value = 50;
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
if(iteration != "run") {
if(qw != nullptr) {
delete qw;
}
std::cout << "Changing to mode " << mode.current << " chunksize " << chunk_size.current << " thread_group " << thread_group.current << std::endl;
switch(mode.current) {
case PMode::expl_copy:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
thread_count_filter.current, thread_count_copy.current, thread_count_aggregation.current, mode.current, thread_group.current, (base_t) 50, (base_t) 42, false);
break;
case PMode::no_copy:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b, results, local_node, remote_node,
thread_count_filter.current, thread_count_copy.current, thread_count_aggregation.current, mode.current, thread_group.current, (base_t) 50, (base_t) 42, true);
break;
case PMode::hbm:
qw = new Query_Wrapper<base_t, simple_query>(&ready_future, workload_b, chunk_size.current, data_a, data_b_hbm, results, local_node, remote_node,
thread_count_filter.current, thread_count_copy.current, thread_count_aggregation.current, mode.current, thread_group.current, (base_t) 50, (base_t) 42, true);
break;
}
}
qw->ready_future = &ready_future;
qw->clear_buffers();
auto filter_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_a(gid, gcnt, tid); };
auto copy_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->scan_b(gid, gcnt, tid); };
auto aggregation_lambda = [&qw](uint32_t gid, uint32_t gcnt, uint32_t tid) { qw->aggr_j(gid, gcnt, tid); };
std::vector<std::thread> filter_pool;
std::vector<std::thread> copy_pool;
std::vector<std::thread> agg_pool;
int thread_id = 0;
// std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(28, 42), std::make_pair(84, 98)}; // node 2 heacboehm2
std::vector<std::pair<int, int>> pinning_ranges {std::make_pair(32, 48), std::make_pair(96, 112)}; // node 2 heacboehm
for(uint32_t gid = 0; gid < thread_group.current; ++gid) {
for(uint32_t tid = 0; tid < thread_count_filter.current; ++tid) {
filter_pool.emplace_back(filter_lambda, gid, thread_group.current, tid);
pin_thread_in_range(filter_pool.back(), thread_id++, pinning_ranges);
}
if(mode.current == PMode::expl_copy){
for(uint32_t tid = 0; tid < thread_count_copy.current; ++tid) {
copy_pool.emplace_back(copy_lambda, gid, thread_group.current, tid);
pin_thread_in_range(copy_pool.back(), thread_id++, pinning_ranges);
}
}
for(uint32_t tid = 0; tid < thread_count_aggregation.current; ++tid) {
agg_pool.emplace_back(aggregation_lambda, gid, thread_group.current, tid);
pin_thread_in_range(agg_pool.back(), thread_id++, pinning_ranges);
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : filter_pool) { t.join(); }
for(std::thread& t : copy_pool) { t.join(); }
for(std::thread& t : agg_pool) { t.join(); }
Aggregation<base_t, Sum, load_mode::Aligned>::apply(results, results, sizeof(base_t) * thread_count_aggregation.current * thread_group.current);
auto end = std::chrono::steady_clock::now();
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000;
uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
double seconds = (double)(nanos) / nanos_per_second;
print_to_file(out_file, run, chunk_size, mode_manager::string(mode.current), thread_count_filter,
thread_count_copy, thread_count_aggregation, thread_group, seconds,
#ifdef THREAD_TIMINGS
qw->trt->summarize_time(0), qw->trt->summarize_time(1), qw->trt->summarize_time(2),
#endif
#ifdef BARRIER_TIMINGS
qw->bt->summarize_time(0), qw->bt->summarize_time(1), qw->bt->summarize_time(2),
#endif
results[0]);
iteration = IterateOnce(run, chunk_size, mode, thread_count_filter, thread_count_copy, thread_count_aggregation, thread_group);
}
numa_free(data_b_hbm, workload_b);
numa_free(data_a, workload_b);
numa_free(data_b, workload_b);
numa_free(results, thread_group.max * sizeof(base_t));
}

188
qdp_project/src/benchmark/latency.cpp

@ -0,0 +1,188 @@
/*
* numa_memory_latency
* Copyright (c) 2017 UMEZAWA Takeshi
* This software is licensed under GNU GPL version 2 or later.
*
* This file has been modified
*/
#include <algorithm>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <iostream>
#include <unistd.h>
#include <ctime>
#include "file_output.h"
#include <vector>
#include <random>
#include <algorithm>
#include <numa.h>
#ifndef VOLATILE
#define VOLATILE 0
#endif
#define cachelinesize 64
union CACHELINE {
char cacheline[cachelinesize];
#if VOLATILE
volatile CACHELINE* next;
#else
CACHELINE* next;
#endif /*VOLATILE*/
};
#define REPT4(x) do { x; x; x; x; } while(0)
#define REPT16(x) do { REPT4(x); REPT4(x); REPT4(x); REPT4(x); } while(0);
#define REPT64(x) do { REPT16(x); REPT16(x); REPT16(x); REPT16(x); } while(0);
#define REPT256(x) do { REPT64(x); REPT64(x); REPT64(x); REPT64(x); } while(0);
#define REPT1024(x) do { REPT256(x); REPT256(x); REPT256(x); REPT256(x); } while(0);
size_t bufsize = 1 * 1024 * 1024 * 1024;
size_t nloop = 128 * 1024;
std::vector<size_t> offsets;
#if VOLATILE
volatile CACHELINE* walk(volatile CACHELINE* start)
{
volatile CACHELINE* p = start;
for (size_t i = 0; i < nloop; ++i) {
REPT1024(p = p->next);
}
return p;
}
#else
CACHELINE* walk(CACHELINE* start, uint64_t* sum)
{
CACHELINE* p = start;
for (size_t i = 0; i < nloop; ++i) {
REPT1024(
*sum += static_cast<uint64_t>(p->cacheline[cachelinesize-1]);
p = p->next;
);
}
return p;
}
#endif /*VOLATILE*/
void bench(int tasknode, int memnode, std::ofstream* out_file)
{
struct timespec ts_begin, ts_end, ts_elapsed;
printf("bench(task=%d, mem=%d)\n", tasknode, memnode);
if (numa_run_on_node(tasknode) != 0) {
printf("failed to run on node: %s\n", strerror(errno));
return;
}
CACHELINE* const buf = (CACHELINE*)numa_alloc_onnode(bufsize, memnode);
if (buf == NULL) {
printf("failed to allocate memory\n");
return;
}
for (size_t i = 0; i < offsets.size() - 1; ++i) {
// assuming that next-pointer never overwrites last Byte of the cacheline/union
buf[offsets[i]].cacheline[cachelinesize-1] = offsets[i] % 128;
buf[offsets[i]].next = buf + offsets[i+1];
}
buf[offsets[offsets.size() - 1]].next = buf;
buf[offsets[offsets.size() - 1]].cacheline[cachelinesize-1] = offsets[offsets.size() - 1] % 128;
uint64_t value = 0;
uint64_t* sum = &value;
clock_gettime(CLOCK_MONOTONIC, &ts_begin);
#if VOLATILE
walk(buf);
#else
walk(buf, sum);
#endif /*VOLATILE*/
clock_gettime(CLOCK_MONOTONIC, &ts_end);
ts_elapsed.tv_nsec = ts_end.tv_nsec - ts_begin.tv_nsec;
ts_elapsed.tv_sec = ts_end.tv_sec - ts_begin.tv_sec;
if (ts_elapsed.tv_nsec < 0) {
--ts_elapsed.tv_sec;
ts_elapsed.tv_nsec += 1000*1000*1000;
}
double elapsed = ts_elapsed.tv_sec + 0.000000001 * ts_elapsed.tv_nsec;
printf("took %fsec. %fns/load\n", elapsed, elapsed/(1024*nloop)*(1000*1000*1000));
print_to_file(*out_file, tasknode, memnode, elapsed/(1024*nloop)*(1000*1000*1000), *sum);
numa_free(buf, bufsize);
}
struct RND {
std::mt19937 mt;
RND() : mt(time(NULL)) {}
std::mt19937::result_type operator()(std::mt19937::result_type n) { return mt() % n; }
} r;
void usage(const char* prog)
{
printf("usage: %s [-h] [bufsize] [nloop]\n", prog);
}
int main(int argc, char* argv[])
{
int ch;
while ((ch = getopt(argc, argv, "h")) != -1) {
switch (ch) {
case 'h':
default:
usage(argv[0]);
exit(1);
}
}
argc -= optind;
argv += optind;
if (argc > 1) {
// 1048576 KiB = 1 GiB
bufsize = atoi(argv[0]) * 1024; // in KiB
nloop = atoi(argv[1]) * 1024;
}
offsets.resize(bufsize / cachelinesize);
for (size_t i = 0; i < offsets.size(); ++i)
offsets[i] = i;
std::random_shuffle(offsets.begin() + 1, offsets.end(), r);
uint64_t expected_checksum = 0;
#if VOLATILE == 0
for (size_t i = 0; i < nloop * 1024; ++i) {
expected_checksum += offsets[i % offsets.size()] % 128;
}
#endif
std::ofstream check_file;
check_file.open("../results/micro_bench/latency/micro_bench_latency_" + (std::string)(VOLATILE == 1 ? "volatile" : "sum") + ".checksum");
check_file << expected_checksum;
check_file.close();
printf("benchmark bufsize=%zuKiB, nloop=%zuKi\n", bufsize/1024, nloop/1024);
std::ofstream out_file;
out_file.open("../results/micro_bench/latency/micro_bench_latency_"+ (std::string)(VOLATILE == 1 ? "volatile" : "sum") + ".csv");
print_to_file(out_file, "tasknode", "memnode", "latency", "checksum");
for (int tasknode = 0; tasknode < 8; tasknode++) {
for (int memnode = 0; memnode < 16; memnode++) {
bench(tasknode, memnode, &out_file);
}
}
return 0;
}

271
qdp_project/src/benchmark/micro_benchmarks.cpp

@ -0,0 +1,271 @@
#include <iostream>
#include <chrono>
#include <future>
#include <numa.h>
#include <algorithm>
#include <cstring>
#include "memory_literals.h"
#include "array_utils.h"
#include "file_output.h"
#include "aggregation.h"
using base_t = uint64_t;
size_t thread_cnt_memcpy = 128;
size_t thread_cnt_read = 128;
size_t runs = 10;
base_t sum_up(base_t* data, size_t workload){
base_t sum = 0;
for(int i = 0; i < workload/sizeof(base_t); i++){
sum += data[i];
}
return sum;
}
int reverse_bits(int number, size_t bit_count) {
int result = 0;
for(int i = 0; i < bit_count; i++) {
result <<= 1;
result |= (number & 1);
number >>= 1;
}
return result;
}
double measure_memcpy_bw(base_t* src, base_t* dest, size_t workload, base_t* result){
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
auto thread_lambda = [&](base_t* source, base_t* destination, size_t count) {
ready_future.wait();
memcpy(destination, source, count);
};
std::vector<std::thread> thread_pool;
size_t total_elements = workload / sizeof(base_t);
size_t elements_per_thread = total_elements / thread_cnt_memcpy;
size_t remainder = total_elements % thread_cnt_memcpy;
for(size_t tid = 0; tid < thread_cnt_memcpy; tid++) {
size_t elements_to_process = elements_per_thread + (tid < remainder ? 1 : 0);
size_t byte_offset = (elements_per_thread * tid + std::min(tid, remainder)) * sizeof(base_t);
thread_pool.emplace_back(thread_lambda, src + byte_offset / sizeof(base_t), dest + byte_offset / sizeof(base_t), elements_to_process * sizeof(base_t));
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : thread_pool) { t.join(); }
auto stop = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(stop - start);
double seconds = duration.count() / 1e9;
double throughput = (workload / seconds) / (1024 * 1024 * 1024);
*result = sum_up(dest, workload);
return throughput;
}
double measure_read_bw(base_t* data, size_t workload, base_t* results){
const size_t chunk_size = sizeof(__m512i);
const size_t num_chunks = (workload) / chunk_size;
__m512i* src = reinterpret_cast<__m512i*>(data);
std::promise<void> p;
std::shared_future<void> ready_future(p.get_future());
size_t num_chunks_per_thread = num_chunks / thread_cnt_read;
size_t num_chunks_remainder = num_chunks % thread_cnt_read;
auto thread_lambda = [&](__m512i* src, int tid, int num_chunks) {
__m512i accumulator = _mm512_setzero_si512();
ready_future.wait();
for (int i = 0; i < num_chunks; i++) {
__m512i chunk = _mm512_load_si512(&src[i]);
accumulator = _mm512_add_epi64(accumulator, chunk);
}
results[tid] = _mm512_reduce_add_epi64(accumulator);
};
std::vector<std::thread> thread_pool;
int offset;
for(int tid = 0; tid < thread_cnt_read; tid++){
if(tid < num_chunks_remainder){
offset = tid * (num_chunks_per_thread + 1);
thread_pool.emplace_back(thread_lambda, &src[offset], tid, (num_chunks_per_thread + 1));
} else {
offset = tid*num_chunks_per_thread + num_chunks_remainder;
thread_pool.emplace_back(thread_lambda, &src[offset], tid, num_chunks_per_thread);
}
}
auto start = std::chrono::steady_clock::now();
p.set_value();
for(std::thread& t : thread_pool) { t.join(); }
auto stop = std::chrono::steady_clock::now();
Aggregation<base_t, Sum, load_mode::Aligned>::apply(results, results, sizeof(base_t) * thread_cnt_read);
auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(stop - start);
double seconds = duration.count() / 1e9;
double throughput = (workload / seconds) / (1024 * 1024 * 1024);
return throughput;
}
void exec_multiple_runs_memcpy(size_t workload, int exec_node, int src_node, int dest_node, std::ofstream* out_file, std::string iteration_type){
base_t value;
base_t* result = &value;
base_t* src = (base_t*) numa_alloc_onnode(workload, src_node);
base_t* dest = (base_t*) numa_alloc_onnode(workload, dest_node);
fill_mt<base_t>(src, workload, 0, 100, 42);
fill_mt<base_t>(dest, workload, 0, 100, 12);
numa_run_on_node(exec_node);
if(dest_node == 0 && src_node == 0){
std::ofstream check_file;
check_file.open("../results/micro_bench/micro_bench_bw_memcpy_execnode_" + std::to_string(exec_node)
+ "_threadcnt_" + std::to_string(thread_cnt_memcpy) + "_" + iteration_type + ".checksum");
check_file << sum_up(src, workload);
check_file.close();
}
for(size_t run = 0; run < runs; run++){
double bw = measure_memcpy_bw(src, dest, workload, result);
std::cout << "Copy throughput executed on node " << exec_node << " form node " << src_node << " to node "
<< dest_node << ": " << bw << " GiB/s" << std::endl;
print_to_file(*out_file, run, src_node, dest_node, bw, *result);
std::memset(dest, 0x00, workload);
*result = 0;
}
numa_free(src, workload);
numa_free(dest, workload);
}
void measure_all_memcpy_bw_for_chosen_execnode(int exec_node){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_memcpy_execnode_" + std::to_string(exec_node)
+ "_threadcnt_" + std::to_string(thread_cnt_memcpy) + ".csv");
print_to_file(out_file, "run", "src_node", "dest_node", "bw", "result");
const size_t workload = 4_GiB;
for(int src_node = 0; src_node < 16; src_node++){
for(int dest_node = 0; dest_node < 16; dest_node++){
exec_multiple_runs_memcpy(workload, exec_node, src_node, dest_node, &out_file, "");
}
}
out_file.close();
}
void measure_all_memcpy_bw_for_chosen_execnode_reversed(int exec_node){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_memcpy_execnode_" + std::to_string(exec_node)
+ "_threadcnt_" + std::to_string(thread_cnt_memcpy) + "_reversed.csv");
print_to_file(out_file, "run", "src_node", "dest_node", "bw", "result");
const size_t workload = 4_GiB;
for(int src_node = 15; src_node >= 0; src_node--){
for(int dest_node = 15; dest_node >= 0; dest_node--){
exec_multiple_runs_memcpy(workload, exec_node, src_node, dest_node, &out_file, "reversed");
}
}
out_file.close();
}
void measure_all_memcpy_bw_for_chosen_execnode_reversed_bitwise(int exec_node){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_memcpy_execnode_" + std::to_string(exec_node)
+ "_threadcnt_" + std::to_string(thread_cnt_memcpy) + "_reversed_bitwise.csv");
print_to_file(out_file, "run", "src_node", "dest_node", "bw", "result");
const size_t workload = 4_GiB;
for(int src_node = 0; src_node < 16; src_node++){
for(int dest_node = 0; dest_node < 16; dest_node++){
int reversed_src_node = reverse_bits(src_node, 4);
int reversed_dest_node = reverse_bits(dest_node, 4);
exec_multiple_runs_memcpy(workload, exec_node, reversed_src_node, reversed_dest_node, &out_file, "reversed_bitwise");
}
}
out_file.close();
}
void exec_multiple_runs_read(size_t workload, int mem_node, int exec_node, std::ofstream *out_file, std::string iteration_type){
base_t* data = (base_t*) numa_alloc_onnode(workload, mem_node);
fill_mt<base_t>(data, workload, 0, 100, 42);
base_t* results = (base_t*) numa_alloc_onnode(thread_cnt_read * sizeof(base_t), exec_node);
numa_run_on_node(exec_node);
if(mem_node == 0 && exec_node == 0){
std::ofstream check_file;
check_file.open("../results/micro_bench/micro_bench_bw_read_threadcnt_" + std::to_string(thread_cnt_read) + "_" + iteration_type + ".checksum");
check_file << sum_up(data, workload);
check_file.close();
}
for(size_t run = 0; run < runs; run++){
double bw = measure_read_bw(data, workload, results);
std::cout << "Read throughput executed on node " << exec_node << " for node " << mem_node << ": " << bw << " GiB/s" << std::endl;
print_to_file(*out_file, run, exec_node, mem_node, bw, results[0]);
std::memset(results, 0x00, thread_cnt_read * sizeof(base_t));
}
numa_free(data, workload);
numa_free(results, thread_cnt_read * sizeof(base_t));
}
void measure_all_read_bw(){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_read_threadcnt_" + std::to_string(thread_cnt_read) + ".csv");
print_to_file(out_file, "run", "exec_node", "mem_node", "bw", "result");
const size_t workload = 8_GiB;
for(int exec_node = 0; exec_node < 8; exec_node++){
for(int mem_node = 0; mem_node < 16; mem_node++){
exec_multiple_runs_read(workload, mem_node, exec_node, &out_file, "");
}
}
out_file.close();
}
void measure_all_read_bw_reversed(){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_read_threadcnt_" + std::to_string(thread_cnt_read) + "_reversed.csv");
print_to_file(out_file, "run", "exec_node", "mem_node", "bw", "result");
const size_t workload = 8_GiB;
for(int exec_node = 7; exec_node >= 0; exec_node--){
for(int mem_node = 15; mem_node >= 0; mem_node--){
exec_multiple_runs_read(workload, mem_node, exec_node, &out_file, "reversed");
}
}
out_file.close();
}
void measure_all_read_bw_reversed_bitwise(){
std::ofstream out_file;
out_file.open("../results/micro_bench/micro_bench_bw_read_threadcnt_" + std::to_string(thread_cnt_read) + "_reversed_bitwise.csv");
print_to_file(out_file, "run", "exec_node", "mem_node", "bw", "result");
const size_t workload = 8_GiB;
for(int exec_node0 = 0; exec_node0 < 8; exec_node0++){
for(int mem_node0 = 0; mem_node0 < 16; mem_node0++){
int mem_node = reverse_bits(mem_node0, 4);
int exec_node = reverse_bits(exec_node0, 3);
exec_multiple_runs_read(workload, mem_node, exec_node, &out_file, "reversed_bitwise");
}
}
out_file.close();
}
int main() {
// nodes 0-7 hold cores and DRAM, nodes 8-15 only HBM
measure_all_read_bw_reversed_bitwise();
measure_all_memcpy_bw_for_chosen_execnode_reversed_bitwise(0);
return 0;
}

391
qdp_project/src/benchmark/pipelines/DIMES_scan_filter_pipe.h

@ -0,0 +1,391 @@
#include <cassert>
#include <mutex>
#include <cstring>
#include <bitset>
#include <numa.h>
#include "filter.h"
#include "aggregation.h"
#include "vector_loader.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "execution_modes.h"
template<typename base_t, bool simple>
class Query_Wrapper {
public:
// sync
std::shared_future<void>* ready_future;
thread_runtime_timing* trt;
barrier_timing* bt;
private:
// numa
uint32_t close_mem;
uint32_t far_mem;
// data
size_t size_b;
size_t chunk_size_b;
size_t chunk_size_w;
size_t chunk_cnt;
base_t* data_a;
base_t* data_b;
base_t* dest;
// ratios
uint32_t thread_count_fc;
uint32_t thread_count_fi;
uint32_t thread_count_ag;
uint32_t thread_group;
// done bits
volatile uint8_t* ready_flag_a;
volatile uint8_t* ready_flag_b;
std::mutex ready_a_m;
std::mutex ready_b_m;
// buffer
uint16_t* mask_a;
uint16_t* mask_b;
base_t** buffer_b;
// params
base_t cmp_a;
base_t cmp_b;
bool no_copy;
NewPMode mode;
// sync
std::unique_ptr<std::vector<std::barrier<barrier_completion_function>*>> sync_barrier;
std::string barrier_mode = BARRIER_MODE;
using filterCopy = Filter<base_t, LT, load_mode::Stream, true>;
using filterNoCopy = Filter<base_t, LT, load_mode::Stream, false>;
using filter = Filter<base_t, LT, load_mode::Stream, false>;
using aggregation = Aggregation<base_t, Sum, load_mode::Stream>;
public:
Query_Wrapper(std::shared_future<void>* rdy_fut, size_t workload_b, size_t chunk_size_b, base_t* data_a,
base_t* data_b, base_t* dest, uint32_t numa_close, uint32_t numa_far, uint32_t tc_fi, uint32_t tc_fc, uint32_t tc_ag,
NewPMode mode, uint32_t thread_group, base_t cmp_a = 50, base_t cmp_b = 42, bool no_copy = false) :
ready_future(rdy_fut), size_b(workload_b), chunk_size_b(chunk_size_b), data_a(data_a), data_b(data_b),
dest(dest), close_mem(numa_close), far_mem(numa_far), mode(mode), thread_group(thread_group), cmp_a(cmp_a), cmp_b(cmp_b), no_copy(no_copy){
chunk_size_w = chunk_size_b / sizeof(base_t);
chunk_cnt = size_b / chunk_size_b;
thread_count_fi = tc_fi;
thread_count_fc = tc_fc;
thread_count_ag = tc_ag;
ready_flag_a = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0), close_mem);
ready_flag_b = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0), close_mem);
mask_a = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
mask_b = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
trt = new thread_runtime_timing(4, 16*4*4*4, close_mem);
bt = new barrier_timing(4, 16*4*4*4, close_mem);
reset_barriers();
if constexpr(BUFFER_LIMIT==1) {
// TODO size ok like that?
buffer_b = (base_t**) numa_alloc_onnode(size_b * sizeof(base_t*), close_mem);
buffer_b[0] = (base_t*) numa_alloc_onnode(thread_group * chunk_size_b, close_mem);
buffer_b[1] = (base_t*) numa_alloc_onnode(thread_group * chunk_size_b, close_mem);
} else {
buffer_b = (base_t **) numa_alloc_onnode(sizeof(base_t*), close_mem);
base_t* buffer_tmp = (base_t *) numa_alloc_onnode(size_b, close_mem);
*buffer_b = buffer_tmp;
}
};
void reset_barriers(){
if(sync_barrier != nullptr) {
for(auto& barrier : *sync_barrier) {
delete barrier;
}
sync_barrier.reset();
}
sync_barrier = std::make_unique<std::vector<std::barrier<barrier_completion_function>*>>(thread_group);
uint32_t thread_count_sum = thread_count_ag + thread_count_fi + thread_count_fc;
uint32_t barrier_count = barrier_mode.compare("global") == 0 ? 1 : thread_group;
uint32_t barrier_thread_count;
if constexpr(simple){
barrier_thread_count = (thread_group / barrier_count) *
(mode == NewPMode::Prefetch ? thread_count_sum : (thread_count_ag + thread_count_fi));
} else {
barrier_thread_count = (thread_group / barrier_count) * thread_count_sum;
}
for(uint32_t i = 0; i < barrier_count; ++i) {
(*sync_barrier)[i] = new std::barrier<barrier_completion_function>(barrier_thread_count);
}
}
void clear_buffers () {
std::memset((void*)ready_flag_a, 0x00, chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
std::memset((void*)ready_flag_b, 0x00, chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
std::memset(mask_a, 0x00, size_b / sizeof(base_t));
std::memset(mask_b, 0x00, size_b / sizeof(base_t));
if constexpr(BUFFER_LIMIT==1) {
std::memset(buffer_b[0], 0x00, thread_group * chunk_size_b);
std::memset(buffer_b[1], 0x00, thread_group * chunk_size_b);
} else {
std::memset(*buffer_b, 0x00, size_b);
}
trt->reset_accumulator();
bt->reset_accumulator();
reset_barriers();
};
~Query_Wrapper() {
numa_free((void*)ready_flag_a,
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
numa_free((void*)ready_flag_b,
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
numa_free(mask_a, size_b / sizeof(base_t));
numa_free(mask_b, size_b / sizeof(base_t));
if constexpr(BUFFER_LIMIT==1) {
numa_free(buffer_b[0], thread_group * chunk_size_b);
numa_free(buffer_b[1], thread_group * chunk_size_b);
numa_free(buffer_b, size_b * sizeof(base_t*));
} else {
numa_free(*buffer_b, size_b);
}
delete trt;
for(auto& barrier : *sync_barrier) {
delete barrier;
}
delete bt;
};
//this can be set without need to change allocations
void set_thread_group_count(uint32_t value) {
this->thread_group = value;
};
private:
static inline base_t* get_sub_chunk_ptr(base_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
base_t* chunk_ptr = base_ptr + chunk_id * chunk_size_w;
return chunk_ptr + tid * (chunk_size_w / tcnt);
}
static inline uint16_t* get_sub_mask_ptr(uint16_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
// 16 integer are addressed with one uint16_t in mask buffer
size_t offset = chunk_id * chunk_size_w + tid * (chunk_size_w / tcnt);
return base_ptr + (offset / 16);
}
static bool bit_at(volatile uint8_t* bitmap, uint32_t bitpos) {
uint8_t value = bitmap[bitpos / 8];
switch(bitpos % 8) {
case 0: return value & 0b00000001;
case 1: return value & 0b00000010;
case 2: return value & 0b00000100;
case 3: return value & 0b00001000;
case 4: return value & 0b00010000;
case 5: return value & 0b00100000;
case 6: return value & 0b01000000;
case 7: return value & 0b10000000;
default: return false;
}
}
static void set_bit_at(volatile uint8_t* bitmap, std::mutex& mutex, uint32_t bitpos) {
mutex.lock();
switch(bitpos % 8) {
case 0: bitmap[bitpos / 8] |= 0b00000001;break;
case 1: bitmap[bitpos / 8] |= 0b00000010;break;
case 2: bitmap[bitpos / 8] |= 0b00000100;break;
case 3: bitmap[bitpos / 8] |= 0b00001000;break;
case 4: bitmap[bitpos / 8] |= 0b00010000;break;
case 5: bitmap[bitpos / 8] |= 0b00100000;break;
case 6: bitmap[bitpos / 8] |= 0b01000000;break;
case 7: bitmap[bitpos / 8] |= 0b10000000;break;
}
mutex.unlock();
}
public:
static base_t checksum(base_t* a, base_t* b, base_t cmp_a, base_t cmp_b, size_t size_b) {
base_t sum = 0;
for(int i = 0; i < size_b / sizeof(base_t); ++i) {
if(a[i] >= cmp_a && b[i] <= cmp_b) {
sum += b[i];
}
}
return sum;
}
static void checkmask(uint16_t* mask, base_t cmp, base_t* data, size_t size_b, bool leq) {
uint32_t cnt = 0;
for(int i = 0; i < size_b / sizeof(base_t); ++i) {
if(leq) {
if(((data[i] <= cmp) != bit_at((uint8_t*)mask, i))) {
++cnt;
}
} else {
if(((data[i] >= cmp) != bit_at((uint8_t*)mask, i))) {
++cnt;
}
}
}
}
static void checkmask_16(uint16_t* mask, base_t cmp, base_t* data, size_t size_b, bool leq) {
for(int i = 0; i < size_b / sizeof(base_t) / 16 ; ++i) {
std::bitset<16> m(mask[i]);
uint16_t ch = 0;
for(int j = 0; j < 16; ++j) {
if(data[i*16 + j] <= cmp) {
ch |= 0x1 << j;
}
}
std::bitset<16> c(ch);
std::cout << "act " << m << std::endl;
std::cout << "rea " << c << std::endl << std::endl;
}
}
void scan_b(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fc;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(1, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_b , chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr (mask_b , chunk_id, chunk_size_w, tid, tcnt);
if constexpr(simple){
base_t* buffer_ptr;
if constexpr(BUFFER_LIMIT==1) {
buffer_ptr = get_sub_chunk_ptr(buffer_b[i % 2], gid, chunk_size_w, tid, tcnt);
} else {
buffer_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
std::memcpy(buffer_ptr, chunk_ptr, chunk_size_b / tcnt);
} else {
if(no_copy) {
filterNoCopy::apply_same(mask_ptr, nullptr, chunk_ptr, cmp_b, chunk_size_b / tcnt);
} else {
base_t* buffer_ptr;
if constexpr(BUFFER_LIMIT==1) {
buffer_ptr = get_sub_chunk_ptr(buffer_b[i % 2], gid, chunk_size_w, tid, tcnt);
} else {
buffer_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
filterCopy::apply_same(mask_ptr, buffer_ptr, chunk_ptr, cmp_b, chunk_size_b / tcnt);
}
}
trt->stop_timer(1, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 1, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void scan_a(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fi;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(0, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, cmp_a, chunk_size_b / tcnt);
trt->stop_timer(0, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 0, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void aggr_j(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_ag;
// wait till everyone can start
ready_future->wait();
// calculate values
__m512i aggregator = aggregation::OP::zero();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
bt->timed_wait(*(*sync_barrier)[barrier_idx], 2, tid * gcnt + gid);
trt->start_timer(2, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr;
if(no_copy) {
chunk_ptr = get_sub_chunk_ptr(data_b, chunk_id, chunk_size_w, tid, tcnt);
} else {
if constexpr(BUFFER_LIMIT==1) {
chunk_ptr = get_sub_chunk_ptr(buffer_b[i % 2], gid, chunk_size_w, tid, tcnt);
} else {
chunk_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
}
uint16_t* mask_ptr_a = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr_b = get_sub_mask_ptr (mask_b, chunk_id, chunk_size_w, tid, tcnt);
base_t tmp = _mm512_reduce_add_epi64(aggregator);
if constexpr(simple){
aggregator = aggregation::apply_masked(aggregator, chunk_ptr, mask_ptr_a, chunk_size_b / tcnt);
} else {
aggregator = aggregation::apply_masked(aggregator, chunk_ptr, mask_ptr_a, mask_ptr_b, chunk_size_b / tcnt);
}
trt->stop_timer(2, tid * gcnt + gid);
}
// so threads with more runs dont wait for finished threads
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
aggregation::happly(dest + (tid * gcnt + gid), aggregator);
}
};

395
qdp_project/src/benchmark/pipelines/MAX_scan_filter_pipe.h

@ -0,0 +1,395 @@
#include <cassert>
#include <mutex>
#include <cstring>
#include <bitset>
#include <algorithm>
#include <numa.h>
#include "filter.h"
#include "aggregation.h"
#include "vector_loader.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "measurement_utils.h"
#include "execution_modes.h"
#include "../../../thirdParty/dsa_offload/offloading-cacher/cache.hpp"
template<typename base_t, bool simple>
class Query_Wrapper {
public:
// sync
std::shared_future<void>* ready_future;
thread_runtime_timing* trt;
barrier_timing* bt;
pcm_value_collector* pvc;
private:
dsacache::Cache cache_;
// numa
uint32_t close_mem;
uint32_t far_mem;
// data
size_t size_b;
size_t chunk_size_b;
size_t chunk_size_w;
size_t chunk_cnt;
base_t* data_a;
base_t* data_b;
base_t* dest;
// ratios
uint32_t thread_count_fc;
uint32_t thread_count_fi;
uint32_t thread_count_ag;
uint32_t thread_group;
// done bits
volatile uint8_t* ready_flag_a;
volatile uint8_t* ready_flag_b;
std::mutex ready_a_m;
std::mutex ready_b_m;
// buffer
uint16_t* mask_a;
uint16_t* mask_b;
// params
base_t cmp_a;
base_t cmp_b;
NewPMode mode;
// sync
std::unique_ptr<std::vector<std::barrier<barrier_completion_function>*>> sync_barrier;
std::string barrier_mode = BARRIER_MODE;
using filterCopy = Filter<base_t, LT, load_mode::Stream, true>;
using filterNoCopy = Filter<base_t, LT, load_mode::Stream, false>;
using filter = Filter<base_t, LT, load_mode::Stream, false>;
using aggregation = Aggregation<base_t, Sum, load_mode::Stream>;
void InitCache(const std::string& device) {
if (device == "default") {
static const auto cache_policy = [](const int numa_dst_node, const int numa_src_node, const size_t data_size) {
return numa_dst_node;
};
static const auto copy_policy = [](const int numa_dst_node, const int numa_src_node) {
return std::vector<int>{ numa_src_node, numa_dst_node };
};
cache_.Init(cache_policy,copy_policy);
}
else if (device == "xeonmax") {
static const auto cache_policy = [](const int numa_dst_node, const int numa_src_node, const size_t data_size) {
return numa_dst_node < 8 ? numa_dst_node + 8 : numa_dst_node;
};
static const auto copy_policy = [](const int numa_dst_node, const int numa_src_node) {
const bool same_socket = ((numa_dst_node ^ numa_src_node) & 4) == 0;
if (same_socket) {
const bool socket_number = numa_dst_node >> 2;
if (socket_number == 0) return std::vector<int>{ 0, 1, 2, 3 };
else return std::vector<int>{ 4, 5, 6, 7 };
}
else return std::vector<int>{ numa_src_node, numa_dst_node };
};
cache_.Init(cache_policy,copy_policy);
}
else {
std::cerr << "Given device '" << device << "' not supported!" << std::endl;
exit(-1);
}
}
public:
Query_Wrapper(std::shared_future<void>* rdy_fut, size_t workload_b, size_t chunk_size_b, base_t* data_a,
base_t* data_b, base_t* dest, uint32_t numa_close, uint32_t numa_far, uint32_t tc_fi, uint32_t tc_fc, uint32_t tc_ag,
NewPMode mode, uint32_t thread_group, base_t cmp_a = 50, base_t cmp_b = 42) :
ready_future(rdy_fut), size_b(workload_b), chunk_size_b(chunk_size_b), data_a(data_a), data_b(data_b),
dest(dest), close_mem(numa_close), far_mem(numa_far), mode(mode), thread_group(thread_group), cmp_a(cmp_a), cmp_b(cmp_b){
chunk_size_w = chunk_size_b / sizeof(base_t);
chunk_cnt = size_b / chunk_size_b;
thread_count_fi = tc_fi;
thread_count_fc = tc_fc;
thread_count_ag = tc_ag;
ready_flag_a = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0), close_mem);
ready_flag_b = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0), close_mem);
mask_a = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
mask_b = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
InitCache("xeonmax");
size_t measurement_space = THREAD_GROUP_MULTIPLIER * std::max(std::max(tc_fi, tc_fc), tc_ag);
trt = new thread_runtime_timing(3, measurement_space, far_mem);
bt = new barrier_timing(3, measurement_space, far_mem);
pvc = new pcm_value_collector({"scan_a", "scan_b", "aggr_j"}, measurement_space, far_mem);
reset_barriers();
};
void reset_barriers(){
if(sync_barrier != nullptr) {
for(auto& barrier : *sync_barrier) {
delete barrier;
}
sync_barrier.reset();
}
sync_barrier = std::make_unique<std::vector<std::barrier<barrier_completion_function>*>>(thread_group);
uint32_t thread_count_sum = thread_count_ag + thread_count_fi + thread_count_fc;
uint32_t barrier_count = barrier_mode.compare("global") == 0 ? 1 : thread_group;
uint32_t barrier_thread_count;
if constexpr(simple){
barrier_thread_count = (thread_group / barrier_count) *
(mode == NewPMode::Prefetch ? thread_count_sum : (thread_count_ag + thread_count_fi));
} else {
barrier_thread_count = (thread_group / barrier_count) * thread_count_sum;
}
for(uint32_t i = 0; i < barrier_count; ++i) {
(*sync_barrier)[i] = new std::barrier<barrier_completion_function>(barrier_thread_count);
}
}
void clear_buffers () {
std::memset((void*)ready_flag_a, 0x00, chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
std::memset((void*)ready_flag_b, 0x00, chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
std::memset(mask_a, 0x00, size_b / sizeof(base_t));
std::memset(mask_b, 0x00, size_b / sizeof(base_t));
cache_.Clear();
trt->reset_accumulator();
bt->reset_accumulator();
pvc->reset();
reset_barriers();
};
~Query_Wrapper() {
numa_free((void*)ready_flag_a,
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
numa_free((void*)ready_flag_b,
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
numa_free(mask_a, size_b / sizeof(base_t));
numa_free(mask_b, size_b / sizeof(base_t));
delete trt;
for(auto& barrier : *sync_barrier) {
delete barrier;
}
delete bt;
delete pvc;
};
//this can be set without need to change allocations
void set_thread_group_count(uint32_t value) {
this->thread_group = value;
};
private:
static inline base_t* get_sub_chunk_ptr(base_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
base_t* chunk_ptr = base_ptr + chunk_id * chunk_size_w;
return chunk_ptr + tid * (chunk_size_w / tcnt);
}
static inline uint16_t* get_sub_mask_ptr(uint16_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
// 16 integer are addressed with one uint16_t in mask buffer
size_t offset = chunk_id * chunk_size_w + tid * (chunk_size_w / tcnt);
return base_ptr + (offset / 16);
}
static bool bit_at(volatile uint8_t* bitmap, uint32_t bitpos) {
uint8_t value = bitmap[bitpos / 8];
switch(bitpos % 8) {
case 0: return value & 0b00000001;
case 1: return value & 0b00000010;
case 2: return value & 0b00000100;
case 3: return value & 0b00001000;
case 4: return value & 0b00010000;
case 5: return value & 0b00100000;
case 6: return value & 0b01000000;
case 7: return value & 0b10000000;
default: return false;
}
}
static void set_bit_at(volatile uint8_t* bitmap, std::mutex& mutex, uint32_t bitpos) {
mutex.lock();
switch(bitpos % 8) {
case 0: bitmap[bitpos / 8] |= 0b00000001;break;
case 1: bitmap[bitpos / 8] |= 0b00000010;break;
case 2: bitmap[bitpos / 8] |= 0b00000100;break;
case 3: bitmap[bitpos / 8] |= 0b00001000;break;
case 4: bitmap[bitpos / 8] |= 0b00010000;break;
case 5: bitmap[bitpos / 8] |= 0b00100000;break;
case 6: bitmap[bitpos / 8] |= 0b01000000;break;
case 7: bitmap[bitpos / 8] |= 0b10000000;break;
}
mutex.unlock();
}
public:
void scan_b(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fc;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(1, tid * gcnt + gid);
pvc->start("scan_b", tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_b, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr(mask_b, chunk_id, chunk_size_w, tid, tcnt);
if constexpr(simple){
cache_.Access(chunk_ptr, chunk_size_b / tcnt);
} else {
const auto data = cache_.Access(chunk_ptr, chunk_size_b / tcnt);
// wait on copy to complete - during this time other threads may
// continue with their calculation which leads to little impact
// and we will be faster if the cache is used
data->WaitOnCompletion();
// obtain the data location from the cache entry
base_t* data_ptr = data->GetDataLocation();
// nullptr is still a legal return value for CacheData::GetLocation()
// even after waiting, so this must be checked
if (data_ptr == nullptr) {
data_ptr = chunk_ptr;
}
filterNoCopy::apply_same(mask_ptr, nullptr, data_ptr, cmp_b, chunk_size_b / tcnt);
}
pvc->stop("scan_b", tid * gcnt + gid);
trt->stop_timer(1, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 1, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void scan_a(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fi;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(0, tid * gcnt + gid);
pvc->start("scan_a", tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, cmp_a, chunk_size_b / tcnt);
pvc->stop("scan_a", tid * gcnt + gid);
trt->stop_timer(0, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 0, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void aggr_j(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_ag;
// wait till everyone can start
ready_future->wait();
// calculate values
__m512i aggregator = aggregation::OP::zero();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
bt->timed_wait(*(*sync_barrier)[barrier_idx], 2, tid * gcnt + gid);
trt->start_timer(2, tid * gcnt + gid);
pvc->start("aggr_j", tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
const base_t* chunk_ptr = get_sub_chunk_ptr(data_b, chunk_id, chunk_size_w, tid, tcnt);
// access the cache for the given chunk which will have been accessed in scan_b
const auto data = cache_.Access(chunk_ptr, chunk_size_b / tcnt);
// wait on the caching task to complete, this will give time for other processes
// to make progress here which will therefore not hurt performance
data->WaitOnCompletion();
// after the copy task has finished we obtain the pointer to the cached
// copy of data_b which is then used from now on
const base_t* data_ptr = data->GetDataLocation();
// nullptr is still a legal return value for CacheData::GetLocation()
// even after waiting, so this must be checked
if (data_ptr == nullptr) {
data_ptr = chunk_ptr;
std::cerr << "Cache Miss" << std::endl;
}
uint16_t* mask_ptr_a = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr_b = get_sub_mask_ptr (mask_b, chunk_id, chunk_size_w, tid, tcnt);
base_t tmp = _mm512_reduce_add_epi64(aggregator);
if constexpr(simple){
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr_a, chunk_size_b / tcnt);
} else {
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr_a, mask_ptr_b, chunk_size_b / tcnt);
}
pvc->stop("aggr_j", tid * gcnt + gid);
trt->stop_timer(2, tid * gcnt + gid);
}
// so threads with more runs dont wait for alerady finished threads
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
aggregation::happly(dest + (tid * gcnt + gid), aggregator);
}
};

387
qdp_project/src/benchmark/pipelines/scan_filter_pipe.h

@ -0,0 +1,387 @@
#include <cassert>
#include <mutex>
#include <cstring>
#include <bitset>
#include <numa.h>
#include "filter.h"
#include "aggregation.h"
#include "vector_loader.h"
#include "timer_utils.h"
#include "barrier_utils.h"
#include "execution_modes.h"
template<typename base_t, bool simple>
class Query_Wrapper {
public:
// sync
std::shared_future<void>* ready_future;
thread_runtime_timing* trt;
barrier_timing* bt;
private:
// numa
uint32_t close_mem;
uint32_t far_mem;
// data
size_t size_b;
size_t chunk_size_b;
size_t chunk_size_w;
size_t chunk_cnt;
base_t* data_a;
base_t* data_b;
base_t* dest;
// ratios
uint32_t thread_count_fc;
uint32_t thread_count_fi;
uint32_t thread_count_ag;
uint32_t thread_group;
// done bits
volatile uint8_t* ready_flag_a;
volatile uint8_t* ready_flag_b;
std::mutex ready_a_m;
std::mutex ready_b_m;
// buffer
uint16_t* mask_a;
uint16_t* mask_b;
base_t** buffer_b;
// params
base_t cmp_a;
base_t cmp_b;
bool no_copy;
PMode mode;
// sync
std::unique_ptr<std::vector<std::barrier<barrier_completion_function>*>> sync_barrier;
std::string barrier_mode = BARRIER_MODE;
using filterCopy = Filter<base_t, LEQ, load_mode::Aligned, true>;
using filterNoCopy = Filter<base_t, LEQ, load_mode::Aligned, false>;
using filter = Filter<base_t, GEQ, load_mode::Aligned, false>;
using aggregation = Aggregation<base_t, Sum, load_mode::Aligned>;
public:
Query_Wrapper(std::shared_future<void>* rdy_fut, size_t workload_b, size_t chunk_size_b, base_t* data_a,
base_t* data_b, base_t* dest, uint32_t numa_close, uint32_t numa_far, uint32_t tc_fi, uint32_t tc_fc, uint32_t tc_ag,
PMode mode, uint32_t thread_group, base_t cmp_a = 50, base_t cmp_b = 42, bool no_copy = false) :
ready_future(rdy_fut), size_b(workload_b), chunk_size_b(chunk_size_b), data_a(data_a), data_b(data_b),
dest(dest), close_mem(numa_close), far_mem(numa_far), mode(mode), thread_group(thread_group), cmp_a(cmp_a), cmp_b(cmp_b), no_copy(no_copy){
chunk_size_w = chunk_size_b / sizeof(base_t);
chunk_cnt = size_b / chunk_size_b;
thread_count_fi = tc_fi;
thread_count_fc = tc_fc;
thread_count_ag = tc_ag;
ready_flag_a = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0), close_mem);
ready_flag_b = (volatile uint8_t *) numa_alloc_onnode(
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0), close_mem);
mask_a = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
mask_b = (uint16_t *) numa_alloc_onnode(size_b / sizeof(base_t), close_mem);
trt = new thread_runtime_timing(4, 20, close_mem);
bt = new barrier_timing(4, 20, close_mem);
reset_barriers();
if constexpr(BUFFER_LIMIT==1) {
// TODO size ok like that?
buffer_b = (base_t**) numa_alloc_onnode(size_b * sizeof(base_t*), close_mem);
buffer_b[0] = (base_t*) numa_alloc_onnode(thread_group * chunk_size_b, close_mem);
buffer_b[1] = (base_t*) numa_alloc_onnode(thread_group * chunk_size_b, close_mem);
} else {
buffer_b = (base_t **) numa_alloc_onnode(sizeof(base_t*), close_mem);
base_t* buffer_tmp = (base_t *) numa_alloc_onnode(size_b, close_mem);
*buffer_b = buffer_tmp;
}
};
void reset_barriers(){
if(sync_barrier != nullptr) {
for(auto& barrier : *sync_barrier) {
delete barrier;
}
sync_barrier.reset();
}
sync_barrier = std::make_unique<std::vector<std::barrier<barrier_completion_function>*>>(thread_group);
uint32_t thread_count_sum = thread_count_ag + thread_count_fi + thread_count_fc;
uint32_t barrier_count = barrier_mode.compare("global") == 0 ? 1 : thread_group;
uint32_t barrier_thread_count;
if constexpr(simple){
barrier_thread_count = (thread_group / barrier_count) *
(mode == PMode::expl_copy ? thread_count_sum : (thread_count_ag + thread_count_fi));
} else {
barrier_thread_count = (thread_group / barrier_count) * thread_count_sum;
}
for(uint32_t i = 0; i < barrier_count; ++i) {
(*sync_barrier)[i] = new std::barrier<barrier_completion_function>(barrier_thread_count);
}
}
void clear_buffers () {
std::memset((void*)ready_flag_a, 0x00, chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
std::memset((void*)ready_flag_b, 0x00, chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
std::memset(mask_a, 0x00, size_b / sizeof(base_t));
std::memset(mask_b, 0x00, size_b / sizeof(base_t));
if constexpr(BUFFER_LIMIT==1) {
std::memset(buffer_b[0], 0x00, thread_group * chunk_size_b);
std::memset(buffer_b[1], 0x00, thread_group * chunk_size_b);
} else {
std::memset(*buffer_b, 0x00, size_b);
}
trt->reset_accumulator();
bt->reset_accumulator();
reset_barriers();
};
~Query_Wrapper() {
numa_free((void*)ready_flag_a,
chunk_cnt * thread_count_fi / 8 + ((chunk_cnt * thread_count_fi % 8) != 0));
numa_free((void*)ready_flag_b,
chunk_cnt * thread_count_fc / 8 + ((chunk_cnt * thread_count_fc % 8) != 0));
numa_free(mask_a, size_b / sizeof(base_t));
numa_free(mask_b, size_b / sizeof(base_t));
if constexpr(BUFFER_LIMIT==1) {
numa_free(buffer_b[0], thread_group * chunk_size_b);
numa_free(buffer_b[1], thread_group * chunk_size_b);
numa_free(buffer_b, size_b * sizeof(base_t*));
} else {
numa_free(*buffer_b, size_b);
}
delete trt;
for(auto& barrier : *sync_barrier) {
delete barrier;
}
delete bt;
};
private:
static inline base_t* get_sub_chunk_ptr(base_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
base_t* chunk_ptr = base_ptr + chunk_id * chunk_size_w;
return chunk_ptr + tid * (chunk_size_w / tcnt);
}
static inline uint16_t* get_sub_mask_ptr(uint16_t* base_ptr, size_t chunk_id, size_t chunk_size_w, size_t tid,
size_t tcnt) {
// 16 integer are addressed with one uint16_t in mask buffer
size_t offset = chunk_id * chunk_size_w + tid * (chunk_size_w / tcnt);
return base_ptr + (offset / 16);
}
static bool bit_at(volatile uint8_t* bitmap, uint32_t bitpos) {
uint8_t value = bitmap[bitpos / 8];
switch(bitpos % 8) {
case 0: return value & 0b00000001;
case 1: return value & 0b00000010;
case 2: return value & 0b00000100;
case 3: return value & 0b00001000;
case 4: return value & 0b00010000;
case 5: return value & 0b00100000;
case 6: return value & 0b01000000;
case 7: return value & 0b10000000;
default: return false;
}
}
static void set_bit_at(volatile uint8_t* bitmap, std::mutex& mutex, uint32_t bitpos) {
mutex.lock();
switch(bitpos % 8) {
case 0: bitmap[bitpos / 8] |= 0b00000001;break;
case 1: bitmap[bitpos / 8] |= 0b00000010;break;
case 2: bitmap[bitpos / 8] |= 0b00000100;break;
case 3: bitmap[bitpos / 8] |= 0b00001000;break;
case 4: bitmap[bitpos / 8] |= 0b00010000;break;
case 5: bitmap[bitpos / 8] |= 0b00100000;break;
case 6: bitmap[bitpos / 8] |= 0b01000000;break;
case 7: bitmap[bitpos / 8] |= 0b10000000;break;
}
mutex.unlock();
}
public:
static base_t checksum(base_t* a, base_t* b, base_t cmp_a, base_t cmp_b, size_t size_b) {
base_t sum = 0;
for(int i = 0; i < size_b / sizeof(base_t); ++i) {
if(a[i] >= cmp_a && b[i] <= cmp_b) {
sum += b[i];
}
}
return sum;
}
static void checkmask(uint16_t* mask, base_t cmp, base_t* data, size_t size_b, bool leq) {
uint32_t cnt = 0;
for(int i = 0; i < size_b / sizeof(base_t); ++i) {
if(leq) {
if(((data[i] <= cmp) != bit_at((uint8_t*)mask, i))) {
++cnt;
}
} else {
if(((data[i] >= cmp) != bit_at((uint8_t*)mask, i))) {
++cnt;
}
}
}
}
static void checkmask_16(uint16_t* mask, base_t cmp, base_t* data, size_t size_b, bool leq) {
for(int i = 0; i < size_b / sizeof(base_t) / 16 ; ++i) {
std::bitset<16> m(mask[i]);
uint16_t ch = 0;
for(int j = 0; j < 16; ++j) {
if(data[i*16 + j] <= cmp) {
ch |= 0x1 << j;
}
}
std::bitset<16> c(ch);
std::cout << "act " << m << std::endl;
std::cout << "rea " << c << std::endl << std::endl;
}
}
void scan_b(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fc;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(1, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_b , chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr (mask_b , chunk_id, chunk_size_w, tid, tcnt);
if constexpr(simple){
base_t* buffer_ptr;
if constexpr(BUFFER_LIMIT==1) {
buffer_ptr = get_sub_chunk_ptr(buffer_b[i % 2], gid, chunk_size_w, tid, tcnt);
} else {
buffer_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
std::memcpy(buffer_ptr, chunk_ptr, chunk_size_b / tcnt);
} else {
if(no_copy) {
filterNoCopy::apply_same(mask_ptr, nullptr, chunk_ptr, cmp_b, chunk_size_b / tcnt);
} else {
base_t* buffer_ptr;
if constexpr(BUFFER_LIMIT==1) {
buffer_ptr = get_sub_chunk_ptr(buffer_b[i % 2], gid, chunk_size_w, tid, tcnt);
} else {
buffer_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
filterCopy::apply_same(mask_ptr, buffer_ptr, chunk_ptr, cmp_b, chunk_size_b / tcnt);
}
}
trt->stop_timer(1, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 1, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void scan_a(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_fi;
assert(chunk_size_w % tcnt == 0);
assert(chunk_size_w % 16 == 0);
assert(chunk_size_w % tcnt * 16 == 0);
// wait till everyone can start
ready_future->wait();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
trt->start_timer(0, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr = get_sub_chunk_ptr(data_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
filter::apply_same(mask_ptr, nullptr, chunk_ptr, cmp_a, chunk_size_b / tcnt);
trt->stop_timer(0, tid * gcnt + gid);
bt->timed_wait(*(*sync_barrier)[barrier_idx], 0, tid * gcnt + gid);
}
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
}
void aggr_j(size_t gid, size_t gcnt, size_t tid) {
size_t tcnt = thread_count_ag;
// wait till everyone can start
ready_future->wait();
// calculate values
__m512i aggregator = aggregation::OP::zero();
// the lower gids run once more if the chunks are not evenly distributable
uint32_t runs = chunk_cnt / gcnt + (chunk_cnt % gcnt > gid);
uint32_t barrier_idx = barrier_mode.compare("global") == 0 ? 0 : gid;
for(uint32_t i = 0; i < runs; ++i) {
bt->timed_wait(*(*sync_barrier)[barrier_idx], 2, tid * gcnt + gid);
trt->start_timer(2, tid * gcnt + gid);
// calculate pointers
size_t chunk_id = gid + gcnt * i;
base_t* chunk_ptr;
if(no_copy) {
chunk_ptr = get_sub_chunk_ptr(data_b, chunk_id, chunk_size_w, tid, tcnt);
} else {
if constexpr(BUFFER_LIMIT==1) {
chunk_ptr = get_sub_chunk_ptr(buffer_b[i%2], gid, chunk_size_w, tid, tcnt);
} else {
chunk_ptr = get_sub_chunk_ptr(*buffer_b, chunk_id, chunk_size_w, tid, tcnt);
}
}
uint16_t* mask_ptr_a = get_sub_mask_ptr (mask_a, chunk_id, chunk_size_w, tid, tcnt);
uint16_t* mask_ptr_b = get_sub_mask_ptr (mask_b, chunk_id, chunk_size_w, tid, tcnt);
base_t tmp = _mm512_reduce_add_epi64(aggregator);
if constexpr(simple){
aggregator = aggregation::apply_masked(aggregator, chunk_ptr, mask_ptr_a, chunk_size_b / tcnt);
} else {
aggregator = aggregation::apply_masked(aggregator, chunk_ptr, mask_ptr_a, mask_ptr_b, chunk_size_b / tcnt);
}
trt->stop_timer(2, tid * gcnt + gid);
}
// so threads with more runs dont wait for finished threads
(*(*sync_barrier)[barrier_idx]).arrive_and_drop();
aggregation::happly(dest + (tid * gcnt + gid), aggregator);
}
};

80
qdp_project/src/utils/array_utils.h

@ -0,0 +1,80 @@
#pragma once
#include <cstdlib>
#include <ctime>
#include <cstdint>
#include <type_traits>
#include <random>
#include <chrono>
#include <immintrin.h>
/// @brief Fills a given array with random generated integers.
/// @tparam base_t Datatype of the array
/// @param dest Pointer to the array
/// @param size Size of the array
/// @param min Minumum value of the generated integers
/// @param max Maximum value of the generated integers
template<typename base_t>
void fill(base_t * dest, uint64_t size, base_t min, base_t max) {
std::srand(std::time(nullptr));
for(uint64_t i = 0; i < size/sizeof(base_t); ++i) {
dest[i] = (std::rand() % (max - min)) + min;
}
}
/// @brief Fills a given array with random generated integers using the mersenne twister engine (type std::mt19937).
/// @tparam base_t Datatype of the array
/// @param dest Pointer to the array
/// @param size Size of the array
/// @param min Minumum value of the generated integers
/// @param max Maximum value of the generated integers
template <typename T>
void fill_mt(T* array, uint64_t size, T min, T max, uint64_t int_seed = 0) {
static_assert(std::is_integral<T>::value, "Data type is not integral.");
size = size / sizeof(T);
std::mt19937::result_type seed;
if (int_seed == 0) {
std::random_device rd;
seed = rd() ^ (
(std::mt19937::result_type) std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::system_clock::now().time_since_epoch()).count() +
(std::mt19937::result_type) std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch()).count());
} else seed = int_seed;
std::mt19937 gen(seed);
std::uniform_int_distribution<T> distrib(min, max);
for (uint64_t j = 0; j < size; ++j) {
array[j] = distrib(gen);
}
}
/**
* @brief Checks if two arrays of the integral type *T* contain the same values
*
* @tparam T Integral type of *array0* and *array1*
* @param array0 Array 0 to check
* @param array1 Array 1 to check
* @param size_b Size of the two arrays in byte
* @param verbose Decides if outputs are verbose of not (print every not matching numbers with their index)
* @return bool Weathor or not the content is equal or not
*/
template <typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
check_same(T* array0, T* array1, size_t size_b, bool verbose) {
for(uint64_t i = 0; i <= size_b / sizeof(T); i += 64 / sizeof(T)) {
__m512i vec0 = _mm512_stream_load_si512(array0 + i);
__m512i vec1 = _mm512_stream_load_si512(array1 + i);
__mmask8 res = _mm512_cmpeq_epi64_mask(vec0, vec1);
}
//TODO complete function
return false;
}

73
qdp_project/src/utils/barrier_utils.h

@ -0,0 +1,73 @@
#pragma once
#include <cstdint>
#include <numa.h>
#include <barrier>
#include <chrono>
#define BARRIER_TIMINGS 1
struct barrier_completion_function {
inline void operator() () {
return;
}
};
struct barrier_timing {
uint32_t time_points, time_threads;
double** time_accumulator;
barrier_timing(uint32_t timing_points, uint32_t timing_threads, uint32_t memory_node) {
#ifdef BARRIER_TIMINGS
time_points = timing_points;
time_threads = timing_threads;
time_accumulator = (double**) numa_alloc_onnode(timing_points * sizeof(double*), memory_node);
for(uint32_t i = 0; i < timing_points; ++i) {
time_accumulator[i] = (double*) numa_alloc_onnode(timing_threads * sizeof(double), memory_node);
}
#endif
}
~barrier_timing() {
#ifdef BARRIER_TIMINGS
for(uint32_t i = 0; i < time_points; ++i) {
numa_free(time_accumulator[i], time_threads * sizeof(double));
}
numa_free(time_accumulator, time_points * sizeof(double*));
#endif
}
void reset_accumulator() {
#ifdef BARRIER_TIMINGS
for(uint32_t i = 0; i < time_points; ++i){
for(uint32_t j = 0; j < time_threads; ++j){
time_accumulator[i][j] = 0.0;
}}
#endif
}
double summarize_time(uint32_t time_point) {
#ifdef BARRIER_TIMINGS
double sum = 0.0;
for(uint32_t i = 0; i < time_threads; ++i) {
sum += time_accumulator[time_point][i];
}
return sum;
#endif
}
void timed_wait(std::barrier<struct barrier_completion_function>& barrier, uint32_t point_id, uint32_t thread_id) {
#ifdef BARRIER_TIMINGS
auto before_barrier = std::chrono::steady_clock::now();
#endif
barrier.arrive_and_wait();
#ifdef BARRIER_TIMINGS
auto after_barrier = std::chrono::steady_clock::now();
uint64_t barrier_wait_time = std::chrono::duration_cast<std::chrono::nanoseconds>(after_barrier - before_barrier).count();
double seconds = barrier_wait_time / (1000.0 * 1000.0 * 1000.0);
time_accumulator[point_id][thread_id] += seconds;
#endif
}
};

33
qdp_project/src/utils/const.h

@ -0,0 +1,33 @@
/**
* @file const.h
* @author André Berthold
* @brief Defines handy constants.
* @version 0.1
* @date 2023-05-25
*
* @copyright Copyright (c) 2023
*
*/
#pragma once
#include <cstdint>
#include <immintrin.h>
constexpr size_t VECTOR_SIZE_I = 512;
constexpr size_t VECTOR_SIZE_B = VECTOR_SIZE_I / 8;
constexpr size_t VECTOR_SIZE_H = VECTOR_SIZE_B / sizeof(uint32_t);
constexpr size_t VECTOR_SIZE_W = VECTOR_SIZE_B / sizeof(uint64_t);
template<typename T>
constexpr size_t VECTOR_SIZE() {
return VECTOR_SIZE_B / sizeof(T);
}
template<typename T>
constexpr size_t V_MASK_SIZE() {
return VECTOR_SIZE<T>() / 8;
}
const __mmask16 full_m16 = _mm512_int2mask(0xFFFF);

82
qdp_project/src/utils/cpu_set_utils.h

@ -0,0 +1,82 @@
#pragma once
#include <cstdint>
#include <thread>
#include <cassert>
#include <iostream>
#include <vector>
#include <utility>
/** Sets all bits in a given cpu_set_t between L and H (condition L <= H)*/
#define CPU_BETWEEN(L, H, SET) assert(L <= H); for(; L < H; ++L) {CPU_SET(L, SET);}
/**
* Applies the affinity defined in set to the thread, through pthread library
* calls. If it fails it wites the problem to stderr and terminated the program.
*/
inline void pin_thread(std::thread& thread, cpu_set_t* set) {
int error_code = pthread_setaffinity_np(thread.native_handle(), sizeof(cpu_set_t), set);
if (error_code != 0) {
std::cerr << "Error calling pthread_setaffinity_np in copy_pool assignment: " << error_code << std::endl;
exit(-1);
}
}
/**
* Returns the cpu id of the thread_id-th cpu in a given (multi)range. Thread_id
* greater than the number of cpus in the (multi)range are valid. In this case
* the (thread_id % #cpus in the range)-th cpu in the range is returned.
*/
int get_cpu_id(int thread_id, const std::vector<std::pair<int, int>>& range) {
int subrange_size = range[0].second - range[0].first;
int i = 0;
while(subrange_size <= thread_id) {
thread_id -= subrange_size;
i = (i + 1) % range.size();
subrange_size = range[i].second - range[i].first;
}
return thread_id + range[i].first;
}
/*inline void cpu_set_between(cpu_set_t* set, uint32_t low, uint32_t high) {
assert(low != high);
if (low > high) std::swap(low, high);
for(; low < high; ++low) {
CPU_SET(low, set);
}
}*/
/**
* Pins the given thread to the thread_id-th cpu in the given range.
*/
void pin_thread_in_range(std::thread& thread, int thread_id, std::vector<std::pair<int, int>>& range) {
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(get_cpu_id(thread_id, range), &set);
pin_thread(thread, &set);
}
/**
* Pins the given thread to all cpus in the given range.
*/
void pin_thread_in_range(std::thread& thread, std::vector<std::pair<int, int>>& range) {
cpu_set_t set;
CPU_ZERO(&set);
for(auto r : range) { CPU_BETWEEN(r.first, r.second, &set); }
pin_thread(thread, &set);
}
/**
* Pins the given thread to all cpu ids between low (incl.) and high (excl.).
*/
inline void pin_thread_between(std::thread& thread, uint32_t low, uint32_t high) {
cpu_set_t set;
CPU_ZERO(&set);
CPU_BETWEEN(low, high, &set);
pin_thread(thread, &set);
}

89
qdp_project/src/utils/execution_modes.h

@ -0,0 +1,89 @@
#include <string>
enum PMode{no_copy = 0, hbm = 1, expl_copy = 2};
struct mode_manager {
static inline PMode inc(PMode value) {
return static_cast<PMode>(value + 1);
};
static inline bool pred(PMode value) {
return no_copy <= value && value <= expl_copy;
};
static std::string string(PMode value) {
switch(value) {
case no_copy: return "no_copy";
case hbm: return "hbm_pre";
case expl_copy:return "expl_co";
} return "no_copy";
};
};
#define SIMPLE_Q 0
#define COMPLEX_Q 1
#define SCAN_A 0
#define SCAN_B 1
#define AGGR_J 2
enum NewPMode{DRAM_base = 0, HBM_base = 1, Mixed_base = 2, Prefetch = 3};
struct new_mode_manager {
/*constexpr static int thread_counts[2][4][3] = {
//simple query
//scan_a, scan_b, aggr_j
{{3, 0, 3}, // DRAM_base
{3, 0, 3}, // HBM_base
{3, 0, 3}, // Mixed_base
{1, 4, 1}},// Prefetching
//complex query
{{1, 4, 1}, // DRAM_base
{1, 4, 1}, // HBM_base
{1, 4, 1}, // Mixed_base
{1, 4, 1}},// Prefetching
};*/
/*constexpr static int thread_counts[2][4][3] = {
//simple query
//scan_a, scan_b, aggr_j
{{2, 0, 4}, // DRAM_base
{2, 0, 4}, // HBM_base
{2, 0, 4}, // Mixed_base
{1, 4, 1}},// Prefetching
//complex query
{{1, 4, 1}, // DRAM_base
{1, 4, 1}, // HBM_base
{1, 4, 1}, // Mixed_base
{1, 4, 1}},// Prefetching
};*/
constexpr static int thread_counts[2][4][3] = {
//simple query
//scan_a, scan_b, aggr_j
{{4, 0, 2}, // DRAM_base
{4, 0, 2}, // HBM_base
{4, 0, 2}, // Mixed_base
{1, 4, 1}},// Prefetching
//complex query
{{1, 4, 1}, // DRAM_base
{1, 4, 1}, // HBM_base
{1, 4, 1}, // Mixed_base
{1, 4, 1}},// Prefetching
};
static inline NewPMode inc(NewPMode value) {
return static_cast<NewPMode>(value + 1);
};
static inline bool pred(NewPMode value) {
return DRAM_base <= value && value <= Prefetch;
};
static int thread_count(uint8_t query_type, NewPMode mode, uint8_t thread_type){
if(query_type > 1) query_type = 1;
if(thread_type > 2) thread_type = 2;
return (thread_counts[query_type][mode][thread_type]);
};
static std::string string(NewPMode value) {
switch(value) {
case DRAM_base: return "DRAM_Baseline";
case HBM_base: return "HBM_Baseline";
case Mixed_base: return "DRAM_HBM_Baseline";
} return "Q-d_Prefetching";
};
};

76
qdp_project/src/utils/file_output.h

@ -0,0 +1,76 @@
/**
* @file file_output.h
* @author André Berthold
* @brief Implements a template-function that accepts an arbitrary number of parameters that should be printed
* @version 0.1
* @date 2023-05-25
*
* @copyright Copyright (c) 2023
*
*/
#pragma once
#include <fstream>
#include <string>
#include <type_traits>
#include "iterable_range.h"
template<class T>
inline constexpr bool is_numeric_v = std::disjunction<
std::is_integral<T>,
std::is_floating_point<T>>::value;
/**
* @brief Converts a parameter to a string by either using it directly or its member current (if it is of type Labeled)
* as parameter to the std::string-Constructor.
*
* @tparam T Type of the parameter
* @param value Parameter to be converted
* @return std::string The converted parameter
*/
template<typename T>
inline std::string to_string(T value) {
if constexpr(std::is_base_of<Labeled, T>::value){
// integrals cannot be use in the string constructor and must be translated by the std::to_string-function
if constexpr (is_numeric_v<decltype(value.current)>) {
return std::to_string(value.current);
} else {
return std::string(value.current);
}
} else {
// integrals cannot be use in the string constructor and must be translated by the std::to_string-function
if constexpr (is_numeric_v<decltype(value)>) {
return std::to_string(value);
} else {
return std::string(value);
}
}
}
/**
* @brief This function wites the content of *val* to *file*. Terminates terecursive function definition.
*
* @tparam type Type of the paramter *val* (is usually implicitly defeined)
* @param file File that is written to
* @param val Value that is translated to a char stream and written to the file
*/
template<typename type>
inline void print_to_file(std::ofstream &file, type val) {
file << to_string(val) << std::endl;
}
/**
* @brief This function wites the content of *val* and that content if *vals* to *file*.
*
* @tparam type Type of the paramter *val* (is usually implicitly defeined)
* @tparam types Parameter pack that describes the types of *vals*
* @param file File that is written to
* @param val Value that is translated to a char stream and written to the file
* @param vals Paramater pack of values that are gonna be printed to the file
*/
template<typename type, typename... types>
inline void print_to_file(std::ofstream &file, type val, types ... vals) {
file << to_string(val) << ",";
print_to_file(file, vals...);
}

208
qdp_project/src/utils/iterable_range.h

@ -0,0 +1,208 @@
#pragma once
#include <cstdint>
#include <type_traits>
#include <string>
constexpr auto NO_NEXT = "false";
/**
* @brief Class that adds an label member-parameter to a sub-class
*
*/
class Labeled {
public:
std::string label;
public:
Labeled(std::string str) : label(str) {};
Labeled(const char* str) { this->label = std::string(str); };
};
/**
* @brief Converts a parameter to a string by either reading the member label (if it is of type Labeled) or using it
* as parameter to the std::string-Constructor.
*
* @tparam T Type of the parameter
* @param value Parameter to be converted
* @return std::string The converted parameter
*/
template<typename T>
inline std::string generateHead(T value) {
if constexpr(std::is_base_of<Labeled, T>::value){
return value.label;
} else {
return std::string(value);
}
}
/**
* @brief Converts a parameter-pack to a string calling genarateHead(T) on every parameter and concatenatin the results.
*
* @tparam T Type of the first parameter
* @tparam Ts Parameter pack specifying the preceeding parameters' types
* @param value Parameter to be transformed
* @param values Parameter-pack of the next prameters to be transformed
* @return std::string Comma-separated concatenation of all parameters string representation
*/
template<typename T, typename... Ts>
inline std::string generateHead(T value, Ts... values) {
return generateHead(value) + ',' + generateHead(values...);
}
/**
* @brief Takes a single Range object and calls its next function.
*
* @tparam T Specific type of the Range object
* @param t Instance of the Range object
* @return std::string Label of the Range object or "false" if the Range reaced its end and was reset
*/
template<typename T>
std::string IterateOnce(T& t) {
if(t.next()) return t.label;
else t.reset();
return std::string(NO_NEXT); //the string signalises that the iteration has to be terminiated.
}
/**
* @brief Takes a number of Range objects and recusively increments them till the first Range does not reach its end
* upon incrementing. It tarts at the first Range object given. Every Range object that reached its end is reset to
* its start value.
*
* @tparam T Specific type of the first Range object
* @tparam Ts Types to the following Range objects
* @param t First instance of the Range object
* @param ts Parameter pack of the following Range objects
* @return std::string Label of the highest index Range object that was altered, or "false" if the last Range object
* reache its end and was reset
*/
template<typename T, typename... Ts>
std::string IterateOnce(T& t , Ts&... ts) {
if(t.next()) return t.label;
else t.reset();
return IterateOnce<Ts...>(ts...);
}
/**
* @brief Class that provides a convenient interface for iteratin throug a parameter range. It stores a public value
* that can be altered by the classes' methods.
*
* @tparam T Base type of the parameter
* @tparam INIT Initial value of the current pointer
* @tparam PRED Struct providing an apply function testing if the current value is in range or not
* @tparam INC Struct providing an apply function setting the current value to the value following the current value
*/
template<typename T, T INIT, typename PRED, typename INC>
class Range : public Labeled {
public:
/**
* @brief Current value of the parameter
*/
T current = INIT;
/**
* @brief Resets current to its initial value
*/
void reset() {current = INIT; };
/**
* @brief Sets current to its next value (according to INC::inc) and returns if the range Reached its end
* (accordingt to PRED::pred).
*
* @return true The newly assigned value of current is in the range
* @return false Otherwise
*/
bool next() {
current = INC::inc(current);
return PRED::pred(current);
};
/**
* @brief Checks if current is in the Range (according to PRED).
*
* @return true PRED returns true
* @return false Otherwise
*/
bool valid() { return PRED::apply(current); };
};
/**
* @brief Class that is in contrast to Range specialized for integral values.
*
* @tparam T Integral base type of the Range
* @tparam INIT Initial value of the parameter
* @tparam MAX Maximal value of the parameter
* @tparam INC Struct providing an apply function setting the current value to the value following the current value
*/
template<typename T, T INIT, T MAX, typename INC>
class Int_Range : public Labeled {
static_assert(std::is_integral<T>::value, "Int_Range requires an integral base type");
public:
const T max = MAX;
T current = INIT;
void reset() {current = INIT; };
bool next() {
current = INC::inc(current);
return current < MAX;
};
bool valid() { return current < MAX; };
};
/**
* @brief Class that is in contrast to Int_Range specialized for integrals that grow linearly.
*
* @tparam T Integral base type of the Range
* @tparam INIT Initial value of the parameter
* @tparam MAX Maximal value of the parameter
* @tparam STEP Increase of the value per next()-call
*/
template<typename T, T INIT, T MAX, T STEP = 1>
class Linear_Int_Range : public Labeled {
static_assert(std::is_integral<T>::value, "Linear_Int_Range requires an integral base type");
public:
const T max = MAX;
T current = INIT;
void reset() {current = INIT; };
bool next() {
current += STEP;
return current < MAX;
};
bool valid() { return current < MAX; };
};
/**
* @brief Class that is in contrast to Int_Range specialized for integrals that grow exponetially.
*
* @tparam T Integral base type of the Range
* @tparam INIT Initial value of the parameter
* @tparam MAX Maximal value of the parameter
* @tparam FACTOR Multiplicative Increase of the value per next()-call
*/
template<typename T, T INIT, T MAX, T FACTOR = 2>
class Exp_Int_Range : public Labeled {
static_assert(std::is_integral<T>::value, "Exp_Int_Range requires an integral base type");
public:
const T max = MAX;
T current = INIT;
void reset() {current = INIT; };
bool next() {
current *= FACTOR;
return current < MAX;
};
bool valid() { return current < MAX; };
};

152
qdp_project/src/utils/measurement_utils.h

@ -0,0 +1,152 @@
#pragma once
#include <cstdint>
#include <chrono>
#include <vector>
#include <string>
#include <algorithm>
#include <numa.h>
#if PCM_M == 1
#define PCM_MEASURE 1
#include "pcm.h"
#endif
struct pcm_value_collector {
const uint32_t value_count = 6;
uint32_t threads;
std::vector<std::string> points;
#ifdef PCM_MEASURE
pcm::SystemCounterState** states;
#endif
uint64_t** collection;
pcm_value_collector(const std::vector<std::string>& in_points, uint32_t threads, uint32_t memory_node) : threads(threads) {
#ifdef PCM_MEASURE
points = std::vector(in_points);
collection = (uint64_t**) numa_alloc_onnode(threads * sizeof(uint64_t*), memory_node);
states = (pcm::SystemCounterState**) numa_alloc_onnode(threads * sizeof(pcm::SystemCounterState*), memory_node);
for(int i = 0; i < threads; ++i) {
collection[i] = (uint64_t*) numa_alloc_onnode(points.size() * value_count * sizeof(uint64_t), memory_node);
states[i] = (pcm::SystemCounterState*) numa_alloc_onnode(points.size() * sizeof(pcm::SystemCounterState), memory_node);
}
#endif
}
~pcm_value_collector() {
#ifdef PCM_MEASURE
for(int i = 0; i < threads; ++i) {
numa_free(collection[threads], points.size() * value_count * sizeof(uint64_t));
}
numa_free(collection, threads * sizeof(uint64_t*));
numa_free(states, threads * sizeof(pcm::SystemCounterState));
#endif
}
void reset() {
#ifdef PCM_MEASURE
for(int i = 0; i < threads; ++i)
for(uint32_t j = 0; j < points.size() * value_count; ++j){
collection[i][j] = 0;
}
#endif
}
int64_t point_index(const std::string& value) {
auto it = std::find(points.begin(), points.end(), value);
if(it == points.end()) return -1;
else return it - points.begin();
}
std::vector<uint64_t> summarize(const std::string &point) {
#ifdef PCM_MEASURE
std::vector<uint64_t> sums(value_count);
int64_t idx = point_index(point);
if(idx < 0) return sums;
for(uint32_t v = 0; v < value_count; ++v) {
for(uint32_t i = 0; i < threads; ++i) {
sums[v] += collection[i][static_cast<uint32_t>(idx) + points.size() * v];
}
}
return sums;
#endif
return std::vector<uint64_t> {0};
}
std::string summarize_as_string(const std::string &point) {
#ifdef PCM_MEASURE
auto summary = summarize(point);
auto it = summary.begin();
auto end = summary.end();
if(it >= end) return "";
std::string result("");
result += std::to_string(*it);
++it;
while(it < end) {
result += ",";
result += std::to_string(*it);
++it;
}
return result;
#endif
return "";
}
void start(const std::string& point, uint32_t thread) {
#ifdef PCM_MEASURE
int64_t idx = point_index(point);
if(idx < 0) {
std::cerr << "Invalid 'point' given. Ignored!" << std::endl;
return;
}
states[thread][static_cast<uint32_t>(idx)] = pcm::getSystemCounterState();
#endif
}
static std::string getHead(const std::string& point) {
return point + "_l2h," +
point + "_l2m," +
point + "_l3h," +
point + "_l3hns," +
point + "_l3m," +
point + "_mc";
}
#ifdef PCM_MEASURE
void read_values(uint32_t point_idx, uint32_t thread, pcm::SystemCounterState& start, pcm::SystemCounterState& end) {
collection[thread][point_idx + points.size() * 0] += getL2CacheHits(start, end);
collection[thread][point_idx + points.size() * 1] += getL2CacheMisses(start, end);
collection[thread][point_idx + points.size() * 2] += getL3CacheHits(start, end);
collection[thread][point_idx + points.size() * 3] += getL3CacheHitsNoSnoop(start, end);
collection[thread][point_idx + points.size() * 4] += getL3CacheMisses(start, end);
collection[thread][point_idx + points.size() * 5] += getBytesReadFromMC(start, end);
}
#endif
void stop(const std::string& point, uint32_t thread) {
#ifdef PCM_MEASURE
auto state = pcm::getSystemCounterState();
int64_t idx = point_index(point);
if(idx < 0) {
std::cerr << "Invalid 'point' given. Ignored!" << std::endl;
return;
}
auto start = states[thread][static_cast<uint32_t>(idx)];
read_values(static_cast<uint32_t>(idx), thread, start, state);
#endif
}
};

45
qdp_project/src/utils/memory_literals.h

@ -0,0 +1,45 @@
/**
* @file memory_literals.h
* @author André Berthold
* @brief Defines some operators that ease to define a certain size of memory.
* e.g. to alloc 3 Gib (Gibibit = 2^30 bit) of memory one can now simply write: "std::malloc(3_Gib)"
* to alloc 512 MB (Megabyte = 10^2 byte) of memory one can now simply write: "std::malloc(512_MB)"
* @version 0.1
* @date 2023-05-25
*
* @copyright Copyright (c) 2023
*
*/
#pragma once
#include <cstdint>
typedef const unsigned long long int ull_int;
//***************************************************************************//
// Bit **********************************************************************//
//***************************************************************************//
constexpr size_t operator ""_b(ull_int value) {
// one byte is 8 bit + one byte if bit is no multiple of 8
return value / 8 + value % 8;
}
constexpr size_t operator ""_kb (ull_int value) { return value * 1000 / 8; }
constexpr size_t operator ""_kib(ull_int value) { return value * 1024 / 8; }
constexpr size_t operator ""_Mb (ull_int value) { return value * 1000 * 1000 / 8; }
constexpr size_t operator ""_Mib(ull_int value) { return value * 1024 * 1024 / 8; }
constexpr size_t operator ""_Gb (ull_int value) { return value * 1000 * 1000 * 1000 / 8; }
constexpr size_t operator ""_Gib(ull_int value) { return value * 1024 * 1024 * 1024 / 8; }
constexpr size_t operator ""_Tb (ull_int value) { return value * 1000 * 1000 * 1000 * 1000 / 8; }
constexpr size_t operator ""_Tib(ull_int value) { return value * 1024 * 1024 * 1024 * 1024 / 8; }
//***************************************************************************//
// Byte *********************************************************************//
//***************************************************************************//
constexpr size_t operator ""_B (ull_int value) { return value; }
constexpr size_t operator ""_kB (ull_int value) { return value * 1000; }
constexpr size_t operator ""_kiB(ull_int value) { return value * 1024; }
constexpr size_t operator ""_MB (ull_int value) { return value * 1000 * 1000; }
constexpr size_t operator ""_MiB(ull_int value) { return value * 1024 * 1024; }
constexpr size_t operator ""_GB (ull_int value) { return value * 1000 * 1000 * 1000; }
constexpr size_t operator ""_GiB(ull_int value) { return value * 1024 * 1024 * 1024; }
constexpr size_t operator ""_TB (ull_int value) { return value * 1000 * 1000 * 1000 * 1000; }
constexpr size_t operator ""_TiB(ull_int value) { return value * 1024 * 1024 * 1024 * 1024; }

6
qdp_project/src/utils/pcm.h

@ -0,0 +1,6 @@
#pragma once
//this file includes all important header from the pcm repository
#include "cpucounters.h"
#include "msr.h"
#include "pci.h"
#include "mutex.h"

80
qdp_project/src/utils/timer_utils.h

@ -0,0 +1,80 @@
#pragma once
#include <cstdint>
#include <chrono>
#include <barrier>
#include <numa.h>
#define THREAD_TIMINGS 1
struct thread_runtime_timing {
using time_point_t = std::chrono::time_point<std::chrono::steady_clock>;
uint32_t time_points, time_threads;
time_point_t** start_times;
double** time_accumulator;
thread_runtime_timing(uint32_t timing_points, uint32_t timing_threads, uint32_t memory_node) {
#ifdef THREAD_TIMINGS
time_points = timing_points;
time_threads = timing_threads;
start_times = (time_point_t**) numa_alloc_onnode(timing_points * sizeof(time_point_t*), memory_node);
time_accumulator = (double**) numa_alloc_onnode(timing_points * sizeof(double*), memory_node);
for(uint32_t i = 0; i < timing_points; ++i) {
start_times[i] = (time_point_t*) numa_alloc_onnode(timing_threads * sizeof(time_point_t), memory_node);
time_accumulator[i] = (double*) numa_alloc_onnode(timing_threads * sizeof(double), memory_node);
}
#endif
}
~thread_runtime_timing() {
#ifdef THREAD_TIMINGS
for(uint32_t i = 0; i < time_points; ++i) {
numa_free(start_times[i], time_threads * sizeof(time_point_t));
numa_free(time_accumulator[i], time_threads * sizeof(double));
}
numa_free(start_times, time_points * sizeof(time_point_t*));
numa_free(time_accumulator, time_points * sizeof(double*));
#endif
}
void reset_accumulator() {
#ifdef THREAD_TIMINGS
for(uint32_t i = 0; i < time_points; ++i){
for(uint32_t j = 0; j < time_threads; ++j){
time_accumulator[i][j] = 0.0;
}}
#endif
}
double summarize_time(uint32_t time_point) {
#ifdef THREAD_TIMINGS
double sum = 0.0;
for(uint32_t i = 0; i < time_threads; ++i) {
sum += time_accumulator[time_point][i];
}
return sum;
#endif
}
void stop_timer(uint32_t point_id, uint32_t thread_id) {
#ifdef THREAD_TIMINGS
auto end_time = std::chrono::steady_clock::now();
auto start_time = start_times[point_id][thread_id];
uint64_t time = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count();
double seconds = time / (1000.0 * 1000.0 * 1000.0);
time_accumulator[point_id][thread_id] += seconds;
#endif
}
void start_timer(uint32_t point_id, uint32_t thread_id) {
#ifdef THREAD_TIMINGS
start_times[point_id][thread_id] = std::chrono::steady_clock::now();
#endif
}
};

93
qdp_project/src/utils/vector_loader.h

@ -0,0 +1,93 @@
/**
* @file vector_loader.h
* @author André Berthold
* @brief Provides an interface to easily excange vector loading strategies
* @version 0.1
* @date 2023-05-25
*
* @copyright Copyright (c) 2023
*
*/
#pragma once
#include <cstdint>
#include <type_traits>
#include <immintrin.h>
enum load_mode {Unaligned = 0, Aligned = 1, Stream = 2};
/**
* @brief A class template that provides functions for loading and storing data of type *base_t* into/from vectors using the stretegy *mode*.
*
* @tparam base_t Base type of the data
* @tparam mode Strategy for loading the vector
*/
template<typename base_t, load_mode mode>
class Vector_Loader {};
/**
* @brief Template specialization for Vector_Loader with base_t = uint32_t.
*
* @tparam mode Strategy for loading the vector
*/
template<load_mode mode>
class Vector_Loader<uint32_t, mode> {
using base_t = uint32_t;
using mask_t = __mmask16;
using mask_base_t = uint8_t;
public:
/**
* @brief Loads 512 bit of data into a vector register
*
* @param src Pointer to the data to load
* @return __m512i The vector register with the loaded data
*/
static inline __m512i load(base_t* src) {
if constexpr (mode == load_mode::Unaligned) return _mm512_loadu_epi32(src);
else if constexpr (mode == load_mode::Aligned) return _mm512_load_epi32 (src);
else if constexpr (mode == load_mode::Stream) return _mm512_stream_load_si512(src);
};
/**
* @brief Stroes data from a given vector register to a destination pointer
*
* @param dst Pointer to the data destination
* @param vector Vector register containing the data to store
*/
static inline void store(base_t* dst, __m512i vector) {
if constexpr (mode == load_mode::Unaligned) _mm512_storeu_epi32(dst, vector);
else if constexpr (mode == load_mode::Aligned) _mm512_store_epi32 (dst, vector);
else if constexpr (mode == load_mode::Stream) _mm512_stream_si512((__m512i*)(dst), vector);
};
};
/**
* @brief Template specialization for Vector_Loader with base_t = uint64_t.
*
* @tparam mode Strategy for loading the vector
*/
template<load_mode mode>
class Vector_Loader<uint64_t, mode> {
using base_t = uint64_t;
using mask_t = __mmask8;
using mask_base_t = uint8_t;
public:
static inline __m512i load(base_t* src) {
if constexpr (mode == load_mode::Unaligned) return _mm512_loadu_epi64(src);
else if constexpr (mode == load_mode::Aligned) return _mm512_load_epi64 (src);
else if constexpr (mode == load_mode::Stream) return _mm512_stream_load_si512(src);
};
static inline void store(base_t* dst, __m512i vector) {
if constexpr (mode == load_mode::Unaligned) _mm512_storeu_epi64(dst, vector);
else if constexpr (mode == load_mode::Aligned) _mm512_store_epi64 (dst, vector);
else if constexpr (mode == load_mode::Stream) _mm512_stream_si512((__m512i*)(dst), vector);
};
};
Loading…
Cancel
Save