|
@ -0,0 +1,108 @@ |
|
|
|
|
|
import os |
|
|
|
|
|
import json |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
from itertools import chain |
|
|
|
|
|
import seaborn as sns |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
from common import calc_throughput |
|
|
|
|
|
|
|
|
|
|
|
result_path = "benchmark-results/" |
|
|
|
|
|
output_path = "benchmark-plots/" |
|
|
|
|
|
|
|
|
|
|
|
runid = "Run ID" |
|
|
|
|
|
x_label = "Destination Node" |
|
|
|
|
|
y_label = "Throughput" |
|
|
|
|
|
|
|
|
|
|
|
title_allnodes = \ |
|
|
|
|
|
"""Copy Throughput in GiB/s tested for 1GiB Elements\n |
|
|
|
|
|
Using all 8 DSA Chiplets available on the System""" |
|
|
|
|
|
title_smartnodes = \ |
|
|
|
|
|
"""Copy Throughput in GiB/s tested for 1GiB Elements\n |
|
|
|
|
|
Using Cross-Copy for Intersocket and all 4 Chiplets of Socket for Intrasocket""" |
|
|
|
|
|
title_difference = \ |
|
|
|
|
|
"""Gain in Copy Throughput in GiB/s of All-DSA vs. Smart Assignment""" |
|
|
|
|
|
|
|
|
|
|
|
description_smartnodes = \ |
|
|
|
|
|
"""Copy Throughput in GiB/s tested for 1GiB Elements\n |
|
|
|
|
|
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n |
|
|
|
|
|
Using all 4 DSA Chiplets of a Socket for Intra-Socket Operation\n |
|
|
|
|
|
And using only the Source and Destination Nodes DSA for Inter-Socket""" |
|
|
|
|
|
description_allnodes = \ |
|
|
|
|
|
"""Copy Throughput in GiB/s tested for 1GiB Elements\n |
|
|
|
|
|
Nodes of {8...15} are HBM accessors for their counterparts (minus 8)\n |
|
|
|
|
|
Using all 8 DSA Chiplets available on the System""" |
|
|
|
|
|
|
|
|
|
|
|
index = [ runid, x_label, y_label] |
|
|
|
|
|
data = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# loads the measurements from a given file and processes them |
|
|
|
|
|
# so that they are normalized, meaning that the timings returned |
|
|
|
|
|
# are nanoseconds per element transfered |
|
|
|
|
|
def load_time_mesurements(file_path): |
|
|
|
|
|
with open(file_path, 'r') as file: |
|
|
|
|
|
data = json.load(file) |
|
|
|
|
|
count = data["count"] |
|
|
|
|
|
batch_size = data["list"][0]["task"]["batching"]["batch_size"] if data["list"][0]["task"]["batching"]["batch_size"] > 0 else 1 |
|
|
|
|
|
iterations = data["list"][0]["task"]["iterations"] |
|
|
|
|
|
|
|
|
|
|
|
return { |
|
|
|
|
|
"size": data["list"][0]["task"]["size"], |
|
|
|
|
|
"total": sum([x / (iterations * batch_size * count * count) for x in list(chain([data["list"][i]["report"]["time"]["total"] for i in range(count)]))]), |
|
|
|
|
|
"combined": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))], |
|
|
|
|
|
"submission": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))], |
|
|
|
|
|
"completion": [ x / (count * batch_size) for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))] |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# procceses a single file and appends the desired timings |
|
|
|
|
|
# to the global data-array, handles multiple runs with a runid |
|
|
|
|
|
# and ignores if the given file is not found as some |
|
|
|
|
|
# configurations may not be benchmarked |
|
|
|
|
|
def process_file_to_dataset(file_path, src_node, dst_node): |
|
|
|
|
|
try: |
|
|
|
|
|
file_data = load_time_mesurements(file_path) |
|
|
|
|
|
time = [file_data["total"]] |
|
|
|
|
|
run_idx = 0 |
|
|
|
|
|
for t in time: |
|
|
|
|
|
data.append({ runid : run_idx, x_label : dst_node, y_label : calc_throughput(file_data["size"], t)}) |
|
|
|
|
|
run_idx = run_idx + 1 |
|
|
|
|
|
except FileNotFoundError: |
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_bar(table,title,node_config): |
|
|
|
|
|
plt.figure(figsize=(8, 6)) |
|
|
|
|
|
|
|
|
|
|
|
sns.barplot(x=x_label, y=y_label, data=table, palette="rocket", errorbar=None) |
|
|
|
|
|
|
|
|
|
|
|
plt.ylim(0, 100) |
|
|
|
|
|
|
|
|
|
|
|
plt.savefig(os.path.join(output_path, f"plot-perf-{node_config}-throughput-selectbarplot.png"), bbox_inches='tight') |
|
|
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# loops over all possible configuration combinations and calls |
|
|
|
|
|
# process_file_to_dataset for them in order to build a dataframe |
|
|
|
|
|
# which is then displayed and saved |
|
|
|
|
|
def main(node_config,title): |
|
|
|
|
|
src_node = 0 |
|
|
|
|
|
for dst_node in {8,11,12,15}: |
|
|
|
|
|
size = "512mib" if node_config == "allnodes" and src_node == dst_node and src_node >= 8 else "1gib" |
|
|
|
|
|
file = os.path.join(result_path, f"copy-n{src_node}ton{dst_node}-{size}-{node_config}-1e.json") |
|
|
|
|
|
process_file_to_dataset(file, src_node, dst_node) |
|
|
|
|
|
|
|
|
|
|
|
df = pd.DataFrame(data) |
|
|
|
|
|
|
|
|
|
|
|
data.clear() |
|
|
|
|
|
df.set_index(index, inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
plot_bar(df, title, node_config) |
|
|
|
|
|
|
|
|
|
|
|
return df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
dall = main("allnodes", title_allnodes) |
|
|
|
|
|
dsmart = main("smart", title_smartnodes) |