Browse Source

fix mistake in benchmark descriptors for smart peak performance

master
Constantin Fürst 1 year ago
parent
commit
791184ff10
  1. 60
      benchmarks/benchmark-descriptors/modifier.py
  2. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton12-1gib-smart.json
  3. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton13-1gib-smart.json
  4. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton14-1gib-smart.json
  5. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton15-1gib-smart.json
  6. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton4-1gib-smart.json
  7. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton5-1gib-smart.json
  8. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton6-1gib-smart.json
  9. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton7-1gib-smart.json
  10. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton12-1gib-smart.json
  11. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton13-1gib-smart.json
  12. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton14-1gib-smart.json
  13. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton15-1gib-smart.json
  14. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton4-1gib-smart.json
  15. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton5-1gib-smart.json
  16. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton6-1gib-smart.json
  17. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton7-1gib-smart.json
  18. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton12-1gib-smart.json
  19. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton13-1gib-smart.json
  20. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton14-1gib-smart.json
  21. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton15-1gib-smart.json
  22. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton4-1gib-smart.json
  23. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton5-1gib-smart.json
  24. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton6-1gib-smart.json
  25. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton7-1gib-smart.json
  26. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton12-1gib-smart.json
  27. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton13-1gib-smart.json
  28. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton14-1gib-smart.json
  29. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton15-1gib-smart.json
  30. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton4-1gib-smart.json
  31. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton5-1gib-smart.json
  32. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton6-1gib-smart.json
  33. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton7-1gib-smart.json
  34. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton12-1gib-smart.json
  35. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton13-1gib-smart.json
  36. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton14-1gib-smart.json
  37. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton15-1gib-smart.json
  38. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton4-1gib-smart.json
  39. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton5-1gib-smart.json
  40. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton6-1gib-smart.json
  41. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton7-1gib-smart.json
  42. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton12-1gib-smart.json
  43. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton13-1gib-smart.json
  44. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton14-1gib-smart.json
  45. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton15-1gib-smart.json
  46. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton4-1gib-smart.json
  47. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton5-1gib-smart.json
  48. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton6-1gib-smart.json
  49. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton7-1gib-smart.json
  50. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton12-1gib-smart.json
  51. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton13-1gib-smart.json
  52. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton14-1gib-smart.json
  53. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton15-1gib-smart.json
  54. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton4-1gib-smart.json
  55. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton5-1gib-smart.json
  56. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton6-1gib-smart.json
  57. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton7-1gib-smart.json
  58. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton12-1gib-smart.json
  59. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton13-1gib-smart.json
  60. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton14-1gib-smart.json
  61. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton15-1gib-smart.json
  62. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton4-1gib-smart.json
  63. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton5-1gib-smart.json
  64. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton6-1gib-smart.json
  65. 8
      benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton7-1gib-smart.json

60
benchmarks/benchmark-descriptors/modifier.py

@ -0,0 +1,60 @@
import os
import json
import shutil
import copy
def make_new_list(old,size):
entry = old[0]
new_list = []
for i in range(size): new_list.append(copy.deepcopy(entry))
return new_list
def process_json_file(file_path):
with open(file_path, 'r') as f:
json_data = json.load(f)
v_src = json_data["list"][0]["affinity"]["nnode_src"]
v_dst = json_data["list"][0]["affinity"]["nnode_dst"]
# Adjust v_src and v_dst based on HBM memory
v_src = v_src - 8 if v_src >= 8 else v_src
v_dst = v_dst - 8 if v_dst >= 8 else v_dst
if (0 <= v_src <= 3 and 0 <= v_dst <= 3):
list_size = 4
json_data["list"] = make_new_list(json_data["list"], list_size)
json_data["count"] = list_size
json_data["list"][0]["affinity"]["node"] = 0
json_data["list"][1]["affinity"]["node"] = 1
json_data["list"][2]["affinity"]["node"] = 2
json_data["list"][3]["affinity"]["node"] = 3
elif (4 <= v_src <= 7 and 4 <= v_dst <= 7):
list_size = 4
json_data["list"] = make_new_list(json_data["list"], list_size)
json_data["count"] = list_size
json_data["list"][0]["affinity"]["node"] = 4
json_data["list"][1]["affinity"]["node"] = 5
json_data["list"][2]["affinity"]["node"] = 6
json_data["list"][3]["affinity"]["node"] = 7
else:
# Case B: inter-socket operation
list_size = 2
json_data["list"] = make_new_list(json_data["list"], list_size)
json_data["count"] = list_size
json_data["list"][0]["affinity"]["node"] = v_src
json_data["list"][1]["affinity"]["node"] = v_dst
# Save modified JSON back to file
with open(file_path, 'w') as f:
json.dump(json_data, f, indent=2)
def process_files_in_folder(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path) and filename.endswith('.json'):
if "copy-n" in filename and "ton" in filename and "-1gib-smart.json" in filename:
process_json_file(file_path)
if __name__ == "__main__":
folder_path = "./benchmark-descriptors/peak-perf-smart/"
process_files_in_folder(folder_path)

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n12ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 12,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 12,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 12,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 12,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n13ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 13,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 13,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 13,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 13,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n14ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 14,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 14,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 14,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 14,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n15ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 15,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 15,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 15,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 15,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n4ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 4,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 4,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 4,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 4,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n5ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 5,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 5,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 5,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 5,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n6ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 6,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 6,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 6,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 6,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton12-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 12,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton13-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 13,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton14-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 14,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton15-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 15,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton4-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 4,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton5-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 5,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton6-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 6,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

8
benchmarks/benchmark-descriptors/peak-perf-smart/copy-n7ton7-1gib-smart.json

@ -5,7 +5,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 7,
"node": 0
"node": 4
},
"task": {
"batching": {
@ -20,7 +20,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 7,
"node": 2
"node": 5
},
"task": {
"batching": {
@ -35,7 +35,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 7,
"node": 4
"node": 6
},
"task": {
"batching": {
@ -50,7 +50,7 @@
"affinity": {
"nnode_dst": 7,
"nnode_src": 7,
"node": 6
"node": 7
},
"task": {
"batching": {

Loading…
Cancel
Save