Constantin Fürst
1 year ago
2 changed files with 96 additions and 0 deletions
-
96benchmarks/benchmark-plotters/plot-opt-submitmethod.py
-
BINbenchmarks/benchmark-results/plot-opt-submitmethod.png
@ -0,0 +1,96 @@ |
|||
import os |
|||
import json |
|||
import pandas as pd |
|||
from pandas.core.ops import methods |
|||
from typing import List |
|||
import seaborn as sns |
|||
import matplotlib.pyplot as plt |
|||
|
|||
runid = "Run ID" |
|||
x_label = "Size of Submitted Task" |
|||
y_label = "Throughput in GiB/s, LogScale" |
|||
var_label = "Submission Type" |
|||
sizes = ["1kib", "4kib", "1mib", "32mib"] |
|||
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "32 MiB"] |
|||
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] |
|||
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"] |
|||
title = "Optimal Submission Method - Copy Operation tested Intra-Node on DDR" |
|||
|
|||
index = [runid, x_label, var_label] |
|||
data = [] |
|||
|
|||
def calc_throughput(size_bytes,time_microseconds): |
|||
time_seconds = time_microseconds * 1e-9 |
|||
size_gib = size_bytes / (1024 ** 3) |
|||
throughput_gibs = size_gib / time_seconds |
|||
return throughput_gibs |
|||
|
|||
|
|||
def index_from_element(value,array): |
|||
for (idx,val) in enumerate(array): |
|||
if val == value: return idx |
|||
return 0 |
|||
|
|||
|
|||
def load_and_process_submit_json(file_path): |
|||
with open(file_path, 'r') as file: |
|||
data = json.load(file) |
|||
return data["list"][0]["report"]["time"] |
|||
|
|||
|
|||
# Function to plot the graph for the new benchmark |
|||
def create_submit_dataset(file_paths, type_label): |
|||
times = [] |
|||
|
|||
type_index = index_from_element(type_label,types) |
|||
type_nice = types_nice[type_index] |
|||
|
|||
idx = 0 |
|||
for file_path in file_paths: |
|||
time = load_and_process_submit_json(file_path) |
|||
times.append(time["combined"]) |
|||
idx = idx + 1 |
|||
|
|||
# Adjust time measurements based on type |
|||
# which can contain multiple submissions |
|||
if type_label in {"bs10", "ms10"}: |
|||
times = [[t / 10 for t in time] for time in times] |
|||
elif type_label in {"ms50", "bs50"}: |
|||
times = [[t / 50 for t in time] for time in times] |
|||
|
|||
times[0] = [t / 1 for t in times[0]] |
|||
times[1] = [t / 4 for t in times[1]] |
|||
times[2] = [t / (1024) for t in times[2]] |
|||
times[3] = [t / (32*1024) for t in times[3]] |
|||
|
|||
throughput = [[calc_throughput(1024,time) for time in t] for t in times] |
|||
|
|||
idx = 0 |
|||
for run_set in throughput: |
|||
run_idx = 0 |
|||
for run in run_set: |
|||
data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]}) |
|||
run_idx = run_idx + 1 |
|||
idx = idx + 1 |
|||
|
|||
|
|||
# Main function to iterate over files and create plots for the new benchmark |
|||
def main(): |
|||
folder_path = "benchmark-results/" # Replace with the actual path to your folder |
|||
|
|||
for type_label in types: |
|||
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] |
|||
create_submit_dataset(file_paths, type_label) |
|||
|
|||
df = pd.DataFrame(data) |
|||
df.set_index(index, inplace=True) |
|||
df = df.sort_values(y_label) |
|||
|
|||
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd").set(yscale="log") |
|||
|
|||
plt.title(title) |
|||
plt.savefig(os.path.join(folder_path, "plot-opt-submitmethod.png"), bbox_inches='tight') |
|||
plt.show() |
|||
|
|||
if __name__ == "__main__": |
|||
main() |
After Width: 623 | Height: 453 | Size: 35 KiB |
Write
Preview
Loading…
Cancel
Save
Reference in new issue