|
|
@ -8,6 +8,7 @@ |
|
|
|
#include <vector>
|
|
|
|
#include <fstream>
|
|
|
|
#include <future>
|
|
|
|
#include <array>
|
|
|
|
|
|
|
|
#include "const.h"
|
|
|
|
#include "filter.h"
|
|
|
@ -32,8 +33,8 @@ constexpr uint32_t ITERATION_COUNT = 5; |
|
|
|
constexpr size_t CHUNK_SIZE_B = 128_MiB; |
|
|
|
constexpr uint32_t GROUP_COUNT = 32; |
|
|
|
constexpr uint32_t TC_SCANA = 1; |
|
|
|
constexpr uint32_t TC_SCANB = 1; |
|
|
|
constexpr uint32_t TC_AGGRJ = 1; |
|
|
|
constexpr uint32_t TC_SCANB = 2; |
|
|
|
constexpr uint32_t TC_AGGRJ = 2; |
|
|
|
constexpr bool PERFORM_CACHING = true; |
|
|
|
constexpr bool DATA_IN_HBM = false; |
|
|
|
constexpr char MODE_STRING[] = "prefetch"; |
|
|
@ -81,6 +82,16 @@ using aggregation = Aggregation<uint64_t, Sum, load_mode::Stream>; |
|
|
|
|
|
|
|
dsacache::Cache CACHE_; |
|
|
|
|
|
|
|
constexpr size_t SCANA_TIMING_INDEX = 0; |
|
|
|
constexpr size_t SCANB_TIMING_INDEX = 1; |
|
|
|
constexpr size_t AGGRJ_TIMING_INDEX = 2; |
|
|
|
constexpr size_t TIME_STAMP_BEGIN = 0; |
|
|
|
constexpr size_t TIME_STAMP_WAIT = 1; |
|
|
|
constexpr size_t TIME_STAMP_END = 2; |
|
|
|
|
|
|
|
// THREAD_TIMING_[TYPE][TID][ITERATION][STAMP] = TIMEPOINT
|
|
|
|
std::array<std::vector<std::vector<std::array<std::chrono::steady_clock::time_point, 3>>>, 3> THREAD_TIMING_; |
|
|
|
|
|
|
|
std::vector<std::barrier<NopStruct>*> BARRIERS_; |
|
|
|
std::shared_future<void> LAUNCH_; |
|
|
|
|
|
|
@ -106,25 +117,81 @@ inline uint16_t* get_mask(uint16_t* base, const size_t chunk_index, const size_t |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void process_timings( |
|
|
|
uint64_t* scana_run, uint64_t* scana_wait, |
|
|
|
uint64_t* scanb_run, uint64_t* scanb_wait, |
|
|
|
uint64_t* aggrj_run, uint64_t* aggrj_wait |
|
|
|
) { |
|
|
|
{ |
|
|
|
uint64_t scana_rc = 0; |
|
|
|
|
|
|
|
for (const auto& e : THREAD_TIMING_[SCANA_TIMING_INDEX]) { |
|
|
|
for (const auto& m : e) { |
|
|
|
*scana_run += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_WAIT] - m[TIME_STAMP_BEGIN]).count(); |
|
|
|
*scana_wait += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_END] - m[TIME_STAMP_WAIT]).count(); |
|
|
|
scana_rc++; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
*scana_run /= scana_rc; |
|
|
|
*scana_wait /= scana_rc; |
|
|
|
} |
|
|
|
{ |
|
|
|
uint64_t scanb_rc = 0; |
|
|
|
|
|
|
|
for (const auto& e : THREAD_TIMING_[SCANB_TIMING_INDEX]) { |
|
|
|
for (const auto& m : e) { |
|
|
|
*scanb_run += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_WAIT] - m[TIME_STAMP_BEGIN]).count(); |
|
|
|
*scanb_wait += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_END] - m[TIME_STAMP_WAIT]).count(); |
|
|
|
scanb_rc++; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
*scana_run /= scanb_rc; |
|
|
|
*scana_wait /= scanb_rc; |
|
|
|
} |
|
|
|
{ |
|
|
|
uint64_t aggrj_rc = 0; |
|
|
|
|
|
|
|
for (const auto& e : THREAD_TIMING_[SCANB_TIMING_INDEX]) { |
|
|
|
for (const auto& m : e) { |
|
|
|
*aggrj_wait += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_WAIT] - m[TIME_STAMP_BEGIN]).count(); |
|
|
|
*aggrj_run += std::chrono::duration_cast<std::chrono::nanoseconds>(m[TIME_STAMP_END] - m[TIME_STAMP_WAIT]).count(); |
|
|
|
aggrj_rc++; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
*aggrj_run /= aggrj_rc; |
|
|
|
*aggrj_wait /= aggrj_rc; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void scan_b(size_t gid, size_t tid) { |
|
|
|
constexpr size_t split = TC_AGGRJ / (TC_SCANB == 0 ? 1 : TC_SCANB); |
|
|
|
const size_t start = tid * split; |
|
|
|
const size_t end = start + split; |
|
|
|
|
|
|
|
THREAD_TIMING_[SCANB_TIMING_INDEX][tid * gid].clear(); |
|
|
|
THREAD_TIMING_[SCANB_TIMING_INDEX][tid * gid].resize(split); |
|
|
|
|
|
|
|
LAUNCH_.wait(); |
|
|
|
|
|
|
|
if constexpr (PERFORM_CACHING) { |
|
|
|
std::vector<std::unique_ptr<dsacache::CacheData>> data; |
|
|
|
|
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
const size_t chunk_index = get_chunk_index(gid, 0); |
|
|
|
uint64_t* chunk_ptr = get_chunk<TC_AGGRJ>(DATA_B_, chunk_index, i); |
|
|
|
|
|
|
|
data.emplace_back(std::move(CACHE_.Access(reinterpret_cast<uint8_t *>(chunk_ptr), CHUNK_SIZE_B / TC_AGGRJ))); |
|
|
|
} |
|
|
|
const auto data = CACHE_.Access(reinterpret_cast<uint8_t*>(chunk_ptr), CHUNK_SIZE_B / TC_AGGRJ); |
|
|
|
|
|
|
|
for (auto& e : data) { |
|
|
|
e->WaitOnCompletion(); |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_WAIT] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
BARRIERS_[gid]->arrive_and_wait(); |
|
|
|
|
|
|
|
data->WaitOnCompletion(); |
|
|
|
|
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_END] = std::chrono::steady_clock::now(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -132,27 +199,45 @@ void scan_b(size_t gid, size_t tid) { |
|
|
|
} |
|
|
|
|
|
|
|
void scan_a(size_t gid, size_t tid) { |
|
|
|
THREAD_TIMING_[SCANA_TIMING_INDEX][tid * gid].clear(); |
|
|
|
THREAD_TIMING_[SCANA_TIMING_INDEX][tid * gid].resize(RUN_COUNT); |
|
|
|
|
|
|
|
LAUNCH_.wait(); |
|
|
|
|
|
|
|
for (size_t i = 0; i < RUN_COUNT; i++) { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
const size_t chunk_index = get_chunk_index(gid, i); |
|
|
|
uint64_t* chunk_ptr = get_chunk<TC_SCANA>(DATA_A_, chunk_index, tid); |
|
|
|
uint16_t* mask_ptr = get_mask<TC_SCANA>(MASK_A_, chunk_index, tid); |
|
|
|
|
|
|
|
filter::apply_same(mask_ptr, nullptr, chunk_ptr, CMP_A, CHUNK_SIZE_B / TC_SCANA); |
|
|
|
|
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_WAIT] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
BARRIERS_[gid]->arrive_and_wait(); |
|
|
|
|
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_END] = std::chrono::steady_clock::now(); |
|
|
|
} |
|
|
|
|
|
|
|
BARRIERS_[gid]->arrive_and_drop(); |
|
|
|
} |
|
|
|
|
|
|
|
void aggr_j(size_t gid, size_t tid) { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid].clear(); |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid].resize(RUN_COUNT); |
|
|
|
|
|
|
|
LAUNCH_.wait(); |
|
|
|
|
|
|
|
__m512i aggregator = aggregation::OP::zero(); |
|
|
|
|
|
|
|
for (size_t i = 0; i < RUN_COUNT; i++) { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_BEGIN] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
BARRIERS_[gid]->arrive_and_wait(); |
|
|
|
|
|
|
|
for (size_t i = 0; i < RUN_COUNT; i++) { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_WAIT] = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
const size_t chunk_index = get_chunk_index(gid, i); |
|
|
|
uint64_t* chunk_ptr = get_chunk<TC_AGGRJ>(DATA_B_, chunk_index, tid); |
|
|
|
uint16_t* mask_ptr = get_mask<TC_AGGRJ>(MASK_A_, chunk_index, tid); |
|
|
@ -173,13 +258,22 @@ void aggr_j(size_t gid, size_t tid) { |
|
|
|
data_ptr = chunk_ptr; |
|
|
|
} |
|
|
|
|
|
|
|
uint64_t tmp = _mm512_reduce_add_epi64(aggregator); |
|
|
|
aggregator = aggregation::apply_masked(aggregator, data_ptr, mask_ptr, CHUNK_SIZE_B / TC_AGGRJ); |
|
|
|
|
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX][tid * gid][i][TIME_STAMP_END] = std::chrono::steady_clock::now(); |
|
|
|
} |
|
|
|
|
|
|
|
BARRIERS_[gid]->arrive_and_drop(); |
|
|
|
|
|
|
|
aggregation::happly(DATA_DST_ + (tid * GROUP_COUNT + gid), aggregator); |
|
|
|
} |
|
|
|
|
|
|
|
int main() { |
|
|
|
THREAD_TIMING_[AGGRJ_TIMING_INDEX].resize(TC_AGGRJ * GROUP_COUNT); |
|
|
|
THREAD_TIMING_[SCANA_TIMING_INDEX].resize(TC_SCANA * GROUP_COUNT); |
|
|
|
THREAD_TIMING_[SCANB_TIMING_INDEX].resize(TC_SCANB * GROUP_COUNT); |
|
|
|
|
|
|
|
const int current_cpu = sched_getcpu(); |
|
|
|
const int current_node = numa_node_of_cpu(current_cpu); |
|
|
|
const int cache_node = CachePlacementPolicy(current_node, current_node, 0); |
|
|
@ -187,7 +281,7 @@ int main() { |
|
|
|
const std::string ofname = "results/qdp-xeonmax-simpleq-" + std::string(MODE_STRING) + "-tca" + std::to_string(TC_SCANA) + "-tcb" + std::to_string(TC_SCANB) + "-tcj" + std::to_string(TC_AGGRJ) + "-tmul" + std::to_string(GROUP_COUNT) + "-wl" + std::to_string(WL_SIZE_B) + "-cs" + std::to_string(CHUNK_SIZE_B) + ".csv"; |
|
|
|
std::ofstream fout(ofname); |
|
|
|
|
|
|
|
fout << "run;time;result[0];" << std::endl; |
|
|
|
fout << "run;rt-ns;rt-s;result[0];scana-run;scana-wait;scanb-run;scanb-wait;aggrj-run;aggrj-wait;" << std::endl; |
|
|
|
|
|
|
|
if constexpr (DATA_IN_HBM) { |
|
|
|
DATA_A_ = (uint64_t*) numa_alloc_onnode(WL_SIZE_B, cache_node); |
|
|
@ -246,7 +340,19 @@ int main() { |
|
|
|
const auto time_end = std::chrono::steady_clock::now(); |
|
|
|
|
|
|
|
if (i >= WARMUP_ITERATION_COUNT) { |
|
|
|
fout << i - WARMUP_ITERATION_COUNT << ";" << std::chrono::duration_cast<std::chrono::nanoseconds>(time_end - time_start).count() << ";" << std::hex << DATA_DST_[0] << std::dec << ";" << std::endl; |
|
|
|
uint64_t scana_run = 0, scana_wait = 0, scanb_run = 0, scanb_wait = 0, aggrj_run = 0, aggrj_wait = 0; |
|
|
|
process_timings(&scana_run, &scana_wait, &scanb_run, &scanb_wait, &aggrj_run, &aggrj_wait); |
|
|
|
|
|
|
|
constexpr double nanos_per_second = ((double)1000) * 1000 * 1000; |
|
|
|
const uint64_t nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(time_end - time_end).count(); |
|
|
|
const double seconds = (double)(nanos) / nanos_per_second; |
|
|
|
|
|
|
|
fout |
|
|
|
<< i - WARMUP_ITERATION_COUNT << ";" |
|
|
|
<< nanos << ";" << seconds << ";" |
|
|
|
<< std::hex << DATA_DST_[0] << std::dec << ";" |
|
|
|
<< scana_run << ";" << scana_wait << ";" << scanb_run << ";" << scanb_wait << ";" << aggrj_run << ";" << aggrj_wait << ";" |
|
|
|
<< std::endl; |
|
|
|
} |
|
|
|
|
|
|
|
for (std::barrier<NopStruct>* b : BARRIERS_) { |
|
|
|