Browse Source

add benchmark plotting scripts using seaborn to display the results, the plots are also added

master
Constantin Fürst 1 year ago
parent
commit
e129638a87
  1. 77
      benchmarks/benchmark-plotters/plot-cost-mtsubmit.py
  2. 80
      benchmarks/benchmark-plotters/plot-perf-enginelocation.py
  3. 105
      benchmarks/benchmark-plotters/plot-perf-submitmethod.py
  4. BIN
      benchmarks/benchmark-results/cross-copy-bench/plot-perf-enginelocation.png
  5. BIN
      benchmarks/benchmark-results/mtsubmit-bench/plot-cost-mtsubmit.png
  6. BIN
      benchmarks/benchmark-results/submit-bench/plot-perf-submitmethod.png

77
benchmarks/benchmark-plotters/plot-cost-mtsubmit.py

@ -0,0 +1,77 @@
import os
import json
import pandas as pd
from pandas.core.ops import methods
import seaborn as sns
import matplotlib.pyplot as plt
x_label = "Copy Type"
y_label = "Time in Microseconds"
var_label = "Thread Counts"
thread_counts = ["1t", "2t", "4t", "8t", "12t"]
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"]
engine_counts = ["1e", "4e"]
engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"]
data = {
x_label : thread_counts_nice,
engine_counts_nice[0] : [],
engine_counts_nice[1] : [],
}
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
# Function to load and process the JSON file for the multi-threaded benchmark
def load_and_process_mt_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
# Extracting count from JSON structure
count = data["count"]
# Extracting time from JSON structure for elements 0 to count
times = [data["list"][i]["report"]["time"]["combined_avg"] for i in range(count)]
# Calculating the average of times
average_time = sum(times) / count
return average_time
# Function to plot the graph for the new benchmark
def plot_mt_graph(file_paths, engine_label):
times = []
for file_path in file_paths:
# Load and process JSON file for the new benchmark
time_microseconds = load_and_process_mt_json(file_path)
times.append(time_microseconds)
engine_index = index_from_element(engine_label,engine_counts)
engine_nice = engine_counts_nice[engine_index]
data[engine_nice] = times
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/mtsubmit-bench/" # Replace with the actual path to your folder
for engine_label in engine_counts:
mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts]
plot_mt_graph(mt_file_paths, engine_label)
df = pd.DataFrame(data)
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis")
plt.savefig(os.path.join(folder_path, "plot-cost-mtsubmit.png"))
plt.show()
if __name__ == "__main__":
main()

80
benchmarks/benchmark-plotters/plot-perf-enginelocation.py

@ -0,0 +1,80 @@
import os
import json
import pandas as pd
from pandas.core.ops import methods
import seaborn as sns
import matplotlib.pyplot as plt
x_label = "Copy Type"
y_label = "Time in Microseconds"
var_label = "Configuration"
types = ["intersock-n0ton4", "internode-n0ton1"]
types_nice = ["Inter-Socket Copy", "Inter-Node Copy"]
copy_methods = ["dstcopy", "srccopy", "xcopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines" ]
data = {
x_label : types_nice,
copy_methods_nice[0] : [],
copy_methods_nice[1] : [],
copy_methods_nice[2] : []
}
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
# Function to load and process the JSON file for the new benchmark
def load_and_process_copy_json(file_path, method_label):
with open(file_path, 'r') as file:
data = json.load(file)
# Extracting time from JSON structure
if method_label == "xcopy":
# For xcopy method, add times from two entries and divide by 4
time_entry1 = data["list"][0]["report"]["time"]["combined_avg"]
time_entry2 = data["list"][1]["report"]["time"]["combined_avg"]
time_microseconds = (time_entry1 + time_entry2) / 4
else:
# For other methods, use the time from the single entry
time_microseconds = data["list"][0]["report"]["time"]["combined_avg"]
return time_microseconds
# Function to plot the graph for the new benchmark
def plot_copy_graph(file_paths, method_label):
times = []
for file_path in file_paths:
# Load and process JSON file for the new benchmark
time_microseconds = load_and_process_copy_json(file_path, method_label)
times.append(time_microseconds)
method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index]
data[method_nice] = times
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/cross-copy-bench/" # Replace with the actual path to your folder
for method_label in copy_methods:
copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-4e.json") for type_label in types]
plot_copy_graph(copy_file_paths, method_label)
df = pd.DataFrame(data)
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis")
plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"))
plt.show()
if __name__ == "__main__":
main()

105
benchmarks/benchmark-plotters/plot-perf-submitmethod.py

@ -0,0 +1,105 @@
import os
import json
import pandas as pd
from pandas.core.ops import methods
from typing import List
import seaborn as sns
import matplotlib.pyplot as plt
x_label = "Size of Submitted Task"
y_label = "Time to Copy 1 KiB in Microseconds"
var_label = "Submission Type"
sizes = ["1kib", "4kib", "1mib", "1gib"]
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"]
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"]
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi Submit, Count 50", "Single Submit"]
data = {
x_label : sizes_nice,
types_nice[0] : [],
types_nice[1] : [],
types_nice[2] : [],
types_nice[3] : [],
types_nice[4] : []
}
stdev = {}
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
def load_and_process_submit_json(file_path,s,t):
with open(file_path, 'r') as file:
data = json.load(file)
time_microseconds = data["list"][0]["report"]["time"]["combined_avg"]
if t not in stdev: stdev[t] = dict()
stdev[t][s] = data["list"][0]["report"]["time"]["combined_stdev"]
return time_microseconds
def stdev_functor(values):
v = values[0]
sd = stdev[v]
return (v - sd, v + sd)
# Function to plot the graph for the new benchmark
def plot_submit_graph(file_paths, type_label):
times = []
type_index = index_from_element(type_label,types)
type_nice = types_nice[type_index]
idx = 0
for file_path in file_paths:
time_microseconds = load_and_process_submit_json(file_path,sizes_nice[idx],type_nice)
times.append(time_microseconds)
idx = idx + 1
# Adjust time measurements based on type
# which can contain multiple submissions
if type_label in {"bs10", "ms10"}:
times = [time / 10 for time in times]
elif type_label in {"ms50", "bs50"}:
times = [time / 50 for time in times]
times[0] = times[0] / 1
times[1] = times[1] / 4
times[2] = times[2] / 1024
times[3] = times[3] / (1024 * 1024)
data[type_nice] = times
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder
for type_label in types:
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes]
plot_submit_graph(file_paths, type_label)
df = pd.DataFrame(data)
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
error_values: List[float] = []
for index,row in dfm.iterrows():
s = dfm[x_label][index]
t = dfm[var_label][index]
error_values.append(stdev[t][s])
dfm["Stdev"] = error_values
print(dfm)
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis", errorbar=("ci", 100))
plt.title("Performance of Submission Methods - Copy Operatione tested Intra-Node on DDR")
plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"))
plt.show()
if __name__ == "__main__":
main()

BIN
benchmarks/benchmark-results/cross-copy-bench/plot-perf-enginelocation.png

After

Width: 733  |  Height: 500  |  Size: 25 KiB

BIN
benchmarks/benchmark-results/mtsubmit-bench/plot-cost-mtsubmit.png

After

Width: 692  |  Height: 500  |  Size: 21 KiB

BIN
benchmarks/benchmark-results/submit-bench/plot-perf-submitmethod.png

After

Width: 710  |  Height: 500  |  Size: 34 KiB

Loading…
Cancel
Save