|
|
import os import json import pandas as pd import seaborn as sns import matplotlib.pyplot as plt
from common import calc_throughput, index_from_element
runid = "Run ID" x_label = "Copy Type" y_label = "Throughput in GiB/s" var_label = "Configuration" types = ["intersock-n0ton4-1mib", "internode-n0ton1-1mib", "intersock-n0ton4-1gib", "internode-n0ton1-1gib"] types_nice = ["Inter-Socket 1MiB", "Inter-Node 1MiB", "Inter-Socket 1GiB", "Inter-Node 1GiB"] copy_methods = ["dstcopy", "srccopy", "xcopy", "srcoutsidercopy", "dstoutsidercopy", "sockoutsidercopy", "nodeoutsidercopy"] copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines", "Engine on SRC-Socket, not SRC-Node", "Engine on DST-Socket, not DST-Node", "Engine on different Socket", "Engine on same Socket"]
title = \ """Throughput showing impact of Engine Location\n
Copy Operation on DDR with 1 Engine per WQ"""
description = \ """Throughput showing impact of Engine Location\n
Some Configurations missing as they are not feesible\n Copy Operation on DDR with 1 Engine per WQ"""
index = [runid, x_label, var_label] data = []
# loads the measurements from a given file and processes them # so that they are normalized, meaning that the timings returned # are nanoseconds per element transfered def load_time_mesurements(file_path,method_label): with open(file_path, 'r') as file: data = json.load(file) iterations = data["list"][0]["task"]["iterations"] if method_label == "xcopy": # xcopy runs on two engines that both copy 1/2 of the entire # specified size of 1gib, therefore the maximum time between # these two is going to be the total time for copy
time0 = data["list"][0]["report"]["time"] time1 = data["list"][1]["report"]["time"]
return { "total": max(time0["total"],time1["total"]) / iterations, "combined" : [max(x,y) for x,y in zip(time0["combined"], time1["combined"])], "submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])], "submission" : [max(x,y) for x,y in zip(time0["completion"], time1["completion"])], }
else: return { "total": data["list"][0]["report"]["time"]["total"] / iterations, "combined": data["list"][0]["report"]["time"]["combined"], "submission": data["list"][0]["report"]["time"]["submission"], "completion": data["list"][0]["report"]["time"]["completion"] }
# procceses a single file and appends the desired timings # to the global data-array, handles multiple runs with a runid # and ignores if the given file is not found as some # configurations may not be benchmarked def create_copy_dataset(file_path, method_label, type_label): method_index = index_from_element(method_label,copy_methods) method_nice = copy_methods_nice[method_index] type_index = index_from_element(type_label, types) type_nice = types_nice[type_index] data_size = 0
if type_label in ["internode-n0ton1-1gib", "intersock-n0ton4-1gib"]: data_size = 1024*1024*1024 elif type_label in ["internode-n0ton1-1mib", "intersock-n0ton4-1mib"]: data_size = 1024 * 1024 else: data_size = 0
try: run_idx = 0 time = [load_time_mesurements(file_path,method_label)["total"]] for t in time: data.append({ runid : run_idx, x_label: type_nice, var_label : method_nice, y_label : calc_throughput(data_size, t)}) run_idx = run_idx + 1 except FileNotFoundError: return
# loops over all possible configuration combinations and calls # process_file_to_dataset for them in order to build a dataframe # which is then displayed and saved def main(): result_path = "benchmark-results/" output_path = "benchmark-plots/"
for method_label in copy_methods: for type_label in types: file = os.path.join(result_path, f"{method_label}-{type_label}-1e.json") create_copy_dataset(file, method_label, type_label)
df = pd.DataFrame(data) df.set_index(index, inplace=True) df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title) plt.savefig(os.path.join(output_path, "plot-perf-enginelocation.png"), bbox_inches='tight') plt.show()
if __name__ == "__main__": main()
|