|
@ -6,25 +6,18 @@ from typing import List |
|
|
import seaborn as sns |
|
|
import seaborn as sns |
|
|
import matplotlib.pyplot as plt |
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
runid = "Run ID" |
|
|
x_label = "Size of Submitted Task" |
|
|
x_label = "Size of Submitted Task" |
|
|
y_label = "Throughput in GiB/s" |
|
|
y_label = "Throughput in GiB/s" |
|
|
var_label = "Submission Type" |
|
|
var_label = "Submission Type" |
|
|
sizes = ["1kib", "4kib", "1mib", "1gib"] |
|
|
sizes = ["1kib", "4kib", "1mib", "1gib"] |
|
|
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"] |
|
|
sizes_nice = ["1 KiB", "4 KiB", "1 MiB", "1 GiB"] |
|
|
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] |
|
|
types = ["bs10", "bs50", "ms10", "ms50", "ssaw"] |
|
|
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi Submit, Count 50", "Single Submit"] |
|
|
|
|
|
|
|
|
types_nice = ["Batch, Size 10", "Batch, Size 50", "Multi-Submit, Count 10", "Multi-Submit, Count 50", "Single Submit"] |
|
|
title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR" |
|
|
title = "Performance of Submission Methods - Copy Operation tested Intra-Node on DDR" |
|
|
|
|
|
|
|
|
data = { |
|
|
|
|
|
x_label : sizes_nice, |
|
|
|
|
|
types_nice[0] : [], |
|
|
|
|
|
types_nice[1] : [], |
|
|
|
|
|
types_nice[2] : [], |
|
|
|
|
|
types_nice[3] : [], |
|
|
|
|
|
types_nice[4] : [] |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
stdev = {} |
|
|
|
|
|
|
|
|
index = [runid, x_label, var_label] |
|
|
|
|
|
data = [] |
|
|
|
|
|
|
|
|
def calc_throughput(size_bytes,time_microseconds): |
|
|
def calc_throughput(size_bytes,time_microseconds): |
|
|
time_seconds = time_microseconds * 1e-6 |
|
|
time_seconds = time_microseconds * 1e-6 |
|
@ -39,20 +32,11 @@ def index_from_element(value,array): |
|
|
return 0 |
|
|
return 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_and_process_submit_json(file_path,s,t): |
|
|
|
|
|
|
|
|
def load_and_process_submit_json(file_path): |
|
|
with open(file_path, 'r') as file: |
|
|
with open(file_path, 'r') as file: |
|
|
data = json.load(file) |
|
|
data = json.load(file) |
|
|
time_microseconds = data["list"][0]["report"]["time"]["combined_avg"] |
|
|
|
|
|
if t not in stdev: stdev[t] = dict() |
|
|
|
|
|
stdev[t][s] = data["list"][0]["report"]["time"]["combined_stdev"] |
|
|
|
|
|
return time_microseconds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def stdev_functor(values): |
|
|
|
|
|
v = values[0] |
|
|
|
|
|
sd = stdev[v] |
|
|
|
|
|
return (v - sd, v + sd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time = { "combined" : data["list"][0]["report"]["time"]["combined"], "submit" : data["list"][0]["report"]["time"]["submit"], "complete" : data["list"][0]["report"]["time"]["complete"]} |
|
|
|
|
|
return time |
|
|
|
|
|
|
|
|
# Function to plot the graph for the new benchmark |
|
|
# Function to plot the graph for the new benchmark |
|
|
def plot_submit_graph(file_paths, type_label): |
|
|
def plot_submit_graph(file_paths, type_label): |
|
@ -63,49 +47,47 @@ def plot_submit_graph(file_paths, type_label): |
|
|
|
|
|
|
|
|
idx = 0 |
|
|
idx = 0 |
|
|
for file_path in file_paths: |
|
|
for file_path in file_paths: |
|
|
time_microseconds = load_and_process_submit_json(file_path,sizes_nice[idx],type_nice) |
|
|
|
|
|
times.append(time_microseconds) |
|
|
|
|
|
|
|
|
time = load_and_process_submit_json(file_path) |
|
|
|
|
|
times.append(time["combined"]) |
|
|
idx = idx + 1 |
|
|
idx = idx + 1 |
|
|
|
|
|
|
|
|
# Adjust time measurements based on type |
|
|
# Adjust time measurements based on type |
|
|
# which can contain multiple submissions |
|
|
# which can contain multiple submissions |
|
|
if type_label in {"bs10", "ms10"}: |
|
|
if type_label in {"bs10", "ms10"}: |
|
|
times = [time / 10 for time in times] |
|
|
|
|
|
|
|
|
times = [[t / 10 for t in time] for time in times] |
|
|
elif type_label in {"ms50", "bs50"}: |
|
|
elif type_label in {"ms50", "bs50"}: |
|
|
times = [time / 50 for time in times] |
|
|
|
|
|
|
|
|
times = [[t / 50 for t in time] for time in times] |
|
|
|
|
|
|
|
|
times[0] = times[0] / 1 |
|
|
|
|
|
times[1] = times[1] / 4 |
|
|
|
|
|
times[2] = times[2] / 1024 |
|
|
|
|
|
times[3] = times[3] / (1024 * 1024) |
|
|
|
|
|
|
|
|
times[0] = [t / 1 for t in times[0]] |
|
|
|
|
|
times[1] = [t / 4 for t in times[1]] |
|
|
|
|
|
times[2] = [t / (1024) for t in times[2]] |
|
|
|
|
|
times[3] = [t / (1024*1024) for t in times[3]] |
|
|
|
|
|
|
|
|
throughput = [calc_throughput(1024,t) for t in times] |
|
|
|
|
|
|
|
|
throughput = [[calc_throughput(1024,time) for time in t] for t in times] |
|
|
|
|
|
|
|
|
data[type_nice] = throughput |
|
|
|
|
|
|
|
|
idx = 0 |
|
|
|
|
|
for run_set in throughput: |
|
|
|
|
|
run_idx = 0 |
|
|
|
|
|
for run in run_set: |
|
|
|
|
|
data.append({ runid : run_idx, x_label: sizes_nice[idx], var_label : type_nice, y_label : throughput[idx][run_idx]}) |
|
|
|
|
|
run_idx = run_idx + 1 |
|
|
|
|
|
idx = idx + 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Main function to iterate over files and create plots for the new benchmark |
|
|
# Main function to iterate over files and create plots for the new benchmark |
|
|
def main(): |
|
|
def main(): |
|
|
folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder |
|
|
folder_path = "benchmark-results/submit-bench/" # Replace with the actual path to your folder |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for type_label in types: |
|
|
for type_label in types: |
|
|
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] |
|
|
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] |
|
|
plot_submit_graph(file_paths, type_label) |
|
|
plot_submit_graph(file_paths, type_label) |
|
|
|
|
|
|
|
|
df = pd.DataFrame(data) |
|
|
df = pd.DataFrame(data) |
|
|
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label) |
|
|
|
|
|
|
|
|
|
|
|
error_values: List[float] = [] |
|
|
|
|
|
for index,row in dfm.iterrows(): |
|
|
|
|
|
s = dfm[x_label][index] |
|
|
|
|
|
t = dfm[var_label][index] |
|
|
|
|
|
error_values.append(stdev[t][s]) |
|
|
|
|
|
|
|
|
|
|
|
dfm["Stdev"] = error_values |
|
|
|
|
|
|
|
|
|
|
|
print(dfm) |
|
|
|
|
|
|
|
|
df.set_index(index, inplace=True) |
|
|
|
|
|
print(df) |
|
|
|
|
|
|
|
|
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis", errorbar=("ci", 100)) |
|
|
|
|
|
|
|
|
sns.catplot(x=x_label, y=y_label, hue=var_label, data=df, kind='bar', height=5, aspect=1, palette="viridis", errorbar="sd") |
|
|
plt.title(title) |
|
|
plt.title(title) |
|
|
plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight') |
|
|
plt.savefig(os.path.join(folder_path, "plot-perf-submitmethod.png"), bbox_inches='tight') |
|
|
plt.show() |
|
|
plt.show() |
|
|