Browse Source

finish the move to save entire results and not condensed average in the plotter scripts

master
Constantin Fürst 1 year ago
parent
commit
c27514890e
  1. 66
      benchmarks/benchmark-plotters/plot-cost-mtsubmit.py
  2. 70
      benchmarks/benchmark-plotters/plot-perf-enginelocation.py
  3. 90
      benchmarks/benchmark-plotters/plot-perf-mtsubmit.py
  4. 15
      benchmarks/benchmark-plotters/plot-perf-submitmethod.py
  5. BIN
      benchmarks/benchmark-results/plot-perf-submitmethod.png

66
benchmarks/benchmark-plotters/plot-cost-mtsubmit.py

@ -1,28 +1,26 @@
import os import os
import json import json
import pandas as pd import pandas as pd
from pandas.core.ops import methods
from itertools import chain
import seaborn as sns import seaborn as sns
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
x_label = "Copy Type"
runid = "Run ID"
x_label = "Thread Count"
y_label = "Throughput in GiB/s" y_label = "Throughput in GiB/s"
var_label = "Thread Counts" var_label = "Thread Counts"
thread_counts = ["1t", "2t", "4t", "8t", "12t"] thread_counts = ["1t", "2t", "4t", "8t", "12t"]
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"] thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"]
engine_counts = ["1e", "4e"] engine_counts = ["1e", "4e"]
engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"] engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"]
title = "Performance of Multi-Threaded Submit - Copy Operation Intra-Node on DDR with Size 1 MiB"
title = "Throughput per Thread - Copy Operation Intra-Node on DDR with Size 1 MiB"
data = {
x_label : thread_counts_nice,
engine_counts_nice[0] : [],
engine_counts_nice[1] : [],
}
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_microseconds): def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-6
time_seconds = time_microseconds * 1e-9
size_gib = size_bytes / (1024 ** 3) size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds throughput_gibs = size_gib / time_seconds
return throughput_gibs return throughput_gibs
@ -34,55 +32,59 @@ def index_from_element(value,array):
return 0 return 0
# Function to load and process the JSON file for the multi-threaded benchmark
def load_and_process_mt_json(file_path):
def load_and_process_copy_json(file_path):
with open(file_path, 'r') as file: with open(file_path, 'r') as file:
data = json.load(file) data = json.load(file)
# Extracting count from JSON structure
count = data["count"] count = data["count"]
# Extracting time from JSON structure for elements 0 to count
times = [data["list"][i]["report"]["time"]["combined_avg"] for i in range(count)]
# Calculating the average of times
average_time = sum(times) / count
return average_time
return {
"combined" : list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)])),
"submission" : list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)])),
"completion" : list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))
}
# Function to plot the graph for the new benchmark # Function to plot the graph for the new benchmark
def plot_mt_graph(file_paths, engine_label):
def create_mtsubmit_dataset(file_paths, engine_label):
times = [] times = []
for file_path in file_paths:
# Load and process JSON file for the new benchmark
time_microseconds = load_and_process_mt_json(file_path)
times.append(time_microseconds)
engine_index = index_from_element(engine_label,engine_counts) engine_index = index_from_element(engine_label,engine_counts)
engine_nice = engine_counts_nice[engine_index] engine_nice = engine_counts_nice[engine_index]
throughput = [calc_throughput(1024*1024, t) for t in times]
idx = 0
for file_path in file_paths:
time = load_and_process_copy_json(file_path)
times.append(time["combined"])
idx = idx + 1
throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times]
data[engine_nice] = throughput
idx = 0
for run_set in throughput:
run_idx = 0
for run in run_set:
data.append({ runid : run_idx, x_label: thread_counts_nice[idx], var_label : engine_nice, y_label : throughput[idx][run_idx]})
run_idx = run_idx + 1
idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark # Main function to iterate over files and create plots for the new benchmark
def main(): def main():
folder_path = "benchmark-results/mtsubmit-bench/" # Replace with the actual path to your folder
folder_path = "benchmark-results/" # Replace with the actual path to your folder
for engine_label in engine_counts: for engine_label in engine_counts:
mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts] mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts]
plot_mt_graph(mt_file_paths, engine_label)
create_mtsubmit_dataset(mt_file_paths, engine_label)
df = pd.DataFrame(data) df = pd.DataFrame(data)
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
df.set_index(index, inplace=True)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis")
plt.title(title) plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-cost-mtsubmit.png"), bbox_inches='tight') plt.savefig(os.path.join(folder_path, "plot-cost-mtsubmit.png"), bbox_inches='tight')
plt.show() plt.show()
if __name__ == "__main__": if __name__ == "__main__":
main() main()

70
benchmarks/benchmark-plotters/plot-perf-enginelocation.py

@ -5,6 +5,7 @@ from pandas.core.ops import methods
import seaborn as sns import seaborn as sns
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
runid = "Run ID"
x_label = "Copy Type" x_label = "Copy Type"
y_label = "Throughput in GiB/s" y_label = "Throughput in GiB/s"
var_label = "Configuration" var_label = "Configuration"
@ -12,18 +13,13 @@ types = ["intersock-n0ton4", "internode-n0ton1"]
types_nice = ["Inter-Socket Copy", "Inter-Node Copy"] types_nice = ["Inter-Socket Copy", "Inter-Node Copy"]
copy_methods = ["dstcopy", "srccopy", "xcopy"] copy_methods = ["dstcopy", "srccopy", "xcopy"]
copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines" ] copy_methods_nice = [ "Engine on DST-Node", "Engine on SRC-Node", "Cross-Copy / Both Engines" ]
title = "Performance of Engine Location - Copy Operation on DDR with Size 1 MiB"
data = {
x_label : types_nice,
copy_methods_nice[0] : [],
copy_methods_nice[1] : [],
copy_methods_nice[2] : []
}
title = "Performance of Engine Location - Copy Operation on DDR with Size 1 MiB and 1 Engine per WQ"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_microseconds): def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-6
time_seconds = time_microseconds * 1e-9
size_gib = size_bytes / (1024 ** 3) size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds throughput_gibs = size_gib / time_seconds
return throughput_gibs return throughput_gibs
@ -35,54 +31,62 @@ def index_from_element(value,array):
return 0 return 0
# Function to load and process the JSON file for the new benchmark
def load_and_process_copy_json(file_path,method_label): def load_and_process_copy_json(file_path,method_label):
with open(file_path, 'r') as file: with open(file_path, 'r') as file:
data = json.load(file) data = json.load(file)
# Extracting time from JSON structure # Extracting time from JSON structure
if method_label == "xcopy": if method_label == "xcopy":
# For xcopy method, add times from two entries and divide by 4
time_entry1 = data["list"][0]["report"]["time"]["combined_avg"]
time_entry2 = data["list"][1]["report"]["time"]["combined_avg"]
time_microseconds = (time_entry1 + time_entry2) / 4
else:
# For other methods, use the time from the single entry
time_microseconds = data["list"][0]["report"]["time"]["combined_avg"]
return time_microseconds
# For xcopy method, add times from two entries and divide by 3
time0 = data["list"][0]["report"]["time"]
time1 = data["list"][1]["report"]["time"]
return {
"combined" : [sum(x) / 4 for x in zip(time0["combined"], time1["combined"])],
"submission" : [sum(x) / 4 for x in zip(time0["completion"], time1["completion"])],
"completion" : [sum(x) / 4 for x in zip(time0["submission"], time1["submission"])]
}
else:
return data["list"][0]["report"]["time"]
# Function to plot the graph for the new benchmark # Function to plot the graph for the new benchmark
def plot_copy_graph(file_paths, method_label):
def create_copy_dataset(file_paths, method_label):
times = [] times = []
for file_path in file_paths:
# Load and process JSON file for the new benchmark
time_microseconds = load_and_process_copy_json(file_path, method_label)
times.append(time_microseconds)
method_index = index_from_element(method_label,copy_methods) method_index = index_from_element(method_label,copy_methods)
method_nice = copy_methods_nice[method_index] method_nice = copy_methods_nice[method_index]
throughput = [calc_throughput(1024*1024, t) for t in times]
idx = 0
for file_path in file_paths:
time = load_and_process_copy_json(file_path,method_label)
times.append(time["combined"])
idx = idx + 1
data[method_nice] = throughput
throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times]
idx = 0
for run_set in throughput:
run_idx = 0
for run in run_set:
data.append({ runid : run_idx, x_label: types_nice[idx], var_label : method_nice, y_label : throughput[idx][run_idx]})
run_idx = run_idx + 1
idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark # Main function to iterate over files and create plots for the new benchmark
def main(): def main():
folder_path = "benchmark-results/cross-copy-bench/" # Replace with the actual path to your folder
folder_path = "benchmark-results/"
for method_label in copy_methods: for method_label in copy_methods:
copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-4e.json") for type_label in types]
plot_copy_graph(copy_file_paths, method_label)
copy_file_paths = [os.path.join(folder_path, f"{method_label}-{type_label}-1mib-1e.json") for type_label in types]
create_copy_dataset(copy_file_paths, method_label)
df = pd.DataFrame(data) df = pd.DataFrame(data)
dfm = pd.melt(df, id_vars=x_label, var_name=var_label, value_name=y_label)
df.set_index(index, inplace=True)
df = df.sort_values(y_label)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
sns.catplot(x=x_label, y=y_label, hue=var_label, data=dfm, kind='bar', height=5, aspect=1, palette="viridis")
plt.title(title) plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"), bbox_inches='tight') plt.savefig(os.path.join(folder_path, "plot-perf-enginelocation.png"), bbox_inches='tight')
plt.show() plt.show()

90
benchmarks/benchmark-plotters/plot-perf-mtsubmit.py

@ -0,0 +1,90 @@
import os
import json
import pandas as pd
from itertools import chain
import seaborn as sns
import matplotlib.pyplot as plt
runid = "Run ID"
x_label = "Thread Count"
y_label = "Throughput in GiB/s"
var_label = "Thread Counts"
thread_counts = ["1t", "2t", "4t", "8t", "12t"]
thread_counts_nice = ["1 Thread", "2 Threads", "4 Threads", "8 Threads", "12 Threads"]
engine_counts = ["1e", "4e"]
engine_counts_nice = ["1 Engine per Group", "4 Engines per Group"]
title = "Combined Throughput - Copy Operation Intra-Node on DDR with Size 1 MiB"
index = [runid, x_label, var_label]
data = []
def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-9
size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds
return throughput_gibs
def index_from_element(value,array):
for (idx,val) in enumerate(array):
if val == value: return idx
return 0
def load_and_process_copy_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
count = data["count"]
return {
"combined" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["combined"] for i in range(count)]))],
"submission" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["submission"] for i in range(count)]))],
"completion" : [x / count for x in list(chain(*[data["list"][i]["report"]["time"]["completion"] for i in range(count)]))]
}
# Function to plot the graph for the new benchmark
def create_mtsubmit_dataset(file_paths, engine_label):
times = []
engine_index = index_from_element(engine_label,engine_counts)
engine_nice = engine_counts_nice[engine_index]
idx = 0
for file_path in file_paths:
time = load_and_process_copy_json(file_path)
times.append(time["combined"])
idx = idx + 1
throughput = [[calc_throughput(1024*1024,time) for time in t] for t in times]
idx = 0
for run_set in throughput:
run_idx = 0
for run in run_set:
data.append({ runid : run_idx, x_label: thread_counts_nice[idx], var_label : engine_nice, y_label : throughput[idx][run_idx]})
run_idx = run_idx + 1
idx = idx + 1
# Main function to iterate over files and create plots for the new benchmark
def main():
folder_path = "benchmark-results/" # Replace with the actual path to your folder
for engine_label in engine_counts:
mt_file_paths = [os.path.join(folder_path, f"mtsubmit-{thread_count}-{engine_label}.json") for thread_count in thread_counts]
create_mtsubmit_dataset(mt_file_paths, engine_label)
df = pd.DataFrame(data)
df.set_index(index, inplace=True)
sns.barplot(x=x_label, y=y_label, hue=var_label, data=df, palette="rocket", errorbar="sd")
plt.title(title)
plt.savefig(os.path.join(folder_path, "plot-perf-mtsubmit.png"), bbox_inches='tight')
plt.show()
if __name__ == "__main__":
main()

15
benchmarks/benchmark-plotters/plot-perf-submitmethod.py

@ -20,7 +20,7 @@ index = [runid, x_label, var_label]
data = [] data = []
def calc_throughput(size_bytes,time_microseconds): def calc_throughput(size_bytes,time_microseconds):
time_seconds = time_microseconds * 1e-6
time_seconds = time_microseconds * 1e-9
size_gib = size_bytes / (1024 ** 3) size_gib = size_bytes / (1024 ** 3)
throughput_gibs = size_gib / time_seconds throughput_gibs = size_gib / time_seconds
return throughput_gibs return throughput_gibs
@ -35,16 +35,11 @@ def index_from_element(value,array):
def load_and_process_submit_json(file_path): def load_and_process_submit_json(file_path):
with open(file_path, 'r') as file: with open(file_path, 'r') as file:
data = json.load(file) data = json.load(file)
time = {
"combined" : data["list"][0]["report"]["time"]["combined"],
"submit" : data["list"][0]["report"]["time"]["submission"],
"complete" : data["list"][0]["report"]["time"]["completion"]
}
return data["list"][0]["report"]["time"]
return time
# Function to plot the graph for the new benchmark # Function to plot the graph for the new benchmark
def plot_submit_graph(file_paths, type_label):
def create_submit_dataset(file_paths, type_label):
times = [] times = []
type_index = index_from_element(type_label,types) type_index = index_from_element(type_label,types)
@ -68,7 +63,7 @@ def plot_submit_graph(file_paths, type_label):
times[2] = [t / (1024) for t in times[2]] times[2] = [t / (1024) for t in times[2]]
times[3] = [t / (32*1024) for t in times[3]] times[3] = [t / (32*1024) for t in times[3]]
throughput = [[calc_throughput(1000*1000,time) for time in t] for t in times]
throughput = [[calc_throughput(1024,time) for time in t] for t in times]
idx = 0 idx = 0
for run_set in throughput: for run_set in throughput:
@ -85,7 +80,7 @@ def main():
for type_label in types: for type_label in types:
file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes] file_paths = [os.path.join(folder_path, f"submit-{type_label}-{size}-1e.json") for size in sizes]
plot_submit_graph(file_paths, type_label)
create_submit_dataset(file_paths, type_label)
df = pd.DataFrame(data) df = pd.DataFrame(data)
df.set_index(index, inplace=True) df.set_index(index, inplace=True)

BIN
benchmarks/benchmark-results/plot-perf-submitmethod.png

Before

Width: 691  |  Height: 453  |  Size: 36 KiB

After

Width: 691  |  Height: 453  |  Size: 36 KiB

Loading…
Cancel
Save