Browse Source

create new timing plots that are now normalized by the longest execution time

master
Constantin Fürst 10 months ago
parent
commit
dfaef5b330
  1. BIN
      qdp_project/plots/plot-timing-distprefetch.pdf
  2. BIN
      qdp_project/plots/plot-timing-dram.pdf
  3. BIN
      qdp_project/plots/plot-timing-hbm.pdf
  4. BIN
      qdp_project/plots/plot-timing-prefetch.pdf
  5. 67
      qdp_project/plotter.py
  6. BIN
      thesis/images/plot-timing-distprefetch.pdf
  7. BIN
      thesis/images/plot-timing-dram.pdf
  8. BIN
      thesis/images/plot-timing-hbm.pdf
  9. BIN
      thesis/images/plot-timing-prefetch.pdf

BIN
qdp_project/plots/plot-timing-distprefetch.pdf

BIN
qdp_project/plots/plot-timing-dram.pdf

BIN
qdp_project/plots/plot-timing-hbm.pdf

BIN
qdp_project/plots/plot-timing-prefetch.pdf

67
qdp_project/plotter.py

@ -3,6 +3,7 @@ import csv
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import seaborn as sns import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
output_path = "./plots" output_path = "./plots"
@ -12,10 +13,11 @@ prefetch_result = "./evaluation-results/current/qdp-xeonmax-prefetch-tca1-tcb1-t
distprefetch_result = "./evaluation-results/current/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" distprefetch_result = "./evaluation-results/current/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv"
tt_name = "rt-ns" tt_name = "rt-ns"
function_names = [ "scana-run", "scanb-run", "aggrj-run" ]
fn_nice = [ "Scan A", "Scan B", "Aggregate" ]
function_names = ["aggrj-run" , "scana-run", "scanb-run" ]
fn_nice_prefetch = [ "Aggregate" ,"Scan A", "Scan A and B (parallel)"]
fn_nice_normal = [ "Aggregate" , "Scan A", "NULL"]
def read_timings_from_csv(fname) -> tuple[list[float], list[str]]:
def read_timings_from_csv(fname, fn_nice) -> tuple[list[float], list[str]]:
t = {} t = {}
row_count = 0 row_count = 0
@ -29,6 +31,9 @@ def read_timings_from_csv(fname) -> tuple[list[float], list[str]]:
t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0} t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0}
if fn_nice[2] in t.keys():
t[fn_nice[1]] = t[fn_nice[1]] - t[fn_nice[2]]
return list(t.values()), list(t.keys()) return list(t.values()), list(t.keys())
@ -130,34 +135,50 @@ def tex_table(df, fname):
# loops over all possible configuration combinations and calls # loops over all possible configuration combinations and calls
# process_file_to_dataset for them in order to build a dataframe # process_file_to_dataset for them in order to build a dataframe
# which is then displayed and saved # which is then displayed and saved
def donut_plot(data: tuple[list[float], list[str]], fname):
palette_color = sns.color_palette('mako_r')
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))
def donut_plot(data: tuple[list[float], list[str]], maxtime, fname):
# pad to maxtime
data[0].append(maxtime - sum(data[0]))
data[1].append("NULL")
# pad to only display semi-circle
data[0].append(sum(data[0]))
data[1].append("NULL")
wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), startangle=-40, colors=palette_color)
fig, (ax, lax) = plt.subplots(nrows=2, gridspec_kw={"height_ratios":[4, 1]})
palette_color = sns.color_palette('mako_r')
wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), colors=palette_color)
wedges[-1].set_visible(False)
wedges[-2].set_visible(False)
ax.set_ylim(-0.0, 1.0)
bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72)
kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center")
legend_labels = [f"{data[0][i]:3.2f} ms - {data[1][i]}" for i in range(len(data[0])) if data[1][i] != "NULL"]
lax.legend(wedges, legend_labels, borderaxespad=0, loc="upper center")
lax.set_ylim(0.0, 0.25)
lax.axis("off")
for i, p in enumerate(wedges):
ang = (p.theta2 - p.theta1)/2. + p.theta1
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = f"angle,angleA=0,angleB={ang}"
kw["arrowprops"].update({"connectionstyle": connectionstyle})
ax.annotate(f"{data[1][i]} - {data[0][i]:2.2f} ms", xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw)
plt.tight_layout()
plt.rcParams.update({'font.size': 18})
plt.rcParams.update({'font.size': 16})
fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') fig.savefig(os.path.join(output_path, fname), bbox_inches='tight')
def main(): def main():
donut_plot(read_timings_from_csv(prefetch_result), "plot-timing-prefetch.pdf")
donut_plot(read_timings_from_csv(distprefetch_result), "plot-timing-distprefetch.pdf")
donut_plot(read_timings_from_csv(dram_result), "plot-timing-dram.pdf")
donut_plot(read_timings_from_csv(hbm_result), "plot-timing-hbm.pdf")
donut_plot(read_timings_from_csv(prefetch_result), "plot-timing-prefetch.pdf")
timings = [
read_timings_from_csv(prefetch_result, fn_nice_prefetch),
read_timings_from_csv(distprefetch_result, fn_nice_prefetch),
read_timings_from_csv(dram_result, fn_nice_normal),
read_timings_from_csv(hbm_result, fn_nice_normal)
]
maxtime = max([sum(timings[0][0]), sum(timings[1][0]), sum(timings[2][0]), sum(timings[3][0])])
donut_plot(timings[0], maxtime, "plot-timing-prefetch.pdf")
donut_plot(timings[1], maxtime, "plot-timing-distprefetch.pdf")
donut_plot(timings[2], maxtime, "plot-timing-dram.pdf")
donut_plot(timings[3], maxtime, "plot-timing-hbm.pdf")
donut_plot(read_timings_from_csv(prefetch_result, fn_nice_prefetch), maxtime, "plot-timing-prefetch.pdf")
tex_table(generate_speedup_table(), "table-qdp-speedup.tex") tex_table(generate_speedup_table(), "table-qdp-speedup.tex")
tex_table(generate_rawtime_base_table(), "table-qdp-baseline.tex") tex_table(generate_rawtime_base_table(), "table-qdp-baseline.tex")

BIN
thesis/images/plot-timing-distprefetch.pdf

BIN
thesis/images/plot-timing-dram.pdf

BIN
thesis/images/plot-timing-hbm.pdf

BIN
thesis/images/plot-timing-prefetch.pdf

Loading…
Cancel
Save