|
@ -3,6 +3,7 @@ import csv |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import pandas as pd |
|
|
import seaborn as sns |
|
|
import seaborn as sns |
|
|
|
|
|
import plotly.express as px |
|
|
import matplotlib.pyplot as plt |
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
output_path = "./plots" |
|
|
output_path = "./plots" |
|
@ -12,10 +13,11 @@ prefetch_result = "./evaluation-results/current/qdp-xeonmax-prefetch-tca1-tcb1-t |
|
|
distprefetch_result = "./evaluation-results/current/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" |
|
|
distprefetch_result = "./evaluation-results/current/qdp-xeonmax-distprefetch-tca1-tcb1-tcj1-tmul32-wl4294967296-cs8388608.csv" |
|
|
|
|
|
|
|
|
tt_name = "rt-ns" |
|
|
tt_name = "rt-ns" |
|
|
function_names = [ "scana-run", "scanb-run", "aggrj-run" ] |
|
|
|
|
|
fn_nice = [ "Scan A", "Scan B", "Aggregate" ] |
|
|
|
|
|
|
|
|
function_names = ["aggrj-run" , "scana-run", "scanb-run" ] |
|
|
|
|
|
fn_nice_prefetch = [ "Aggregate" ,"Scan A", "Scan A and B (parallel)"] |
|
|
|
|
|
fn_nice_normal = [ "Aggregate" , "Scan A", "NULL"] |
|
|
|
|
|
|
|
|
def read_timings_from_csv(fname) -> tuple[list[float], list[str]]: |
|
|
|
|
|
|
|
|
def read_timings_from_csv(fname, fn_nice) -> tuple[list[float], list[str]]: |
|
|
t = {} |
|
|
t = {} |
|
|
|
|
|
|
|
|
row_count = 0 |
|
|
row_count = 0 |
|
@ -29,6 +31,9 @@ def read_timings_from_csv(fname) -> tuple[list[float], list[str]]: |
|
|
|
|
|
|
|
|
t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0} |
|
|
t = {key: value / (1000 * 1000 * row_count) for key, value in t.items() if value != 0} |
|
|
|
|
|
|
|
|
|
|
|
if fn_nice[2] in t.keys(): |
|
|
|
|
|
t[fn_nice[1]] = t[fn_nice[1]] - t[fn_nice[2]] |
|
|
|
|
|
|
|
|
return list(t.values()), list(t.keys()) |
|
|
return list(t.values()), list(t.keys()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -130,34 +135,50 @@ def tex_table(df, fname): |
|
|
# loops over all possible configuration combinations and calls |
|
|
# loops over all possible configuration combinations and calls |
|
|
# process_file_to_dataset for them in order to build a dataframe |
|
|
# process_file_to_dataset for them in order to build a dataframe |
|
|
# which is then displayed and saved |
|
|
# which is then displayed and saved |
|
|
def donut_plot(data: tuple[list[float], list[str]], fname): |
|
|
|
|
|
palette_color = sns.color_palette('mako_r') |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) |
|
|
|
|
|
|
|
|
def donut_plot(data: tuple[list[float], list[str]], maxtime, fname): |
|
|
|
|
|
# pad to maxtime |
|
|
|
|
|
data[0].append(maxtime - sum(data[0])) |
|
|
|
|
|
data[1].append("NULL") |
|
|
|
|
|
|
|
|
|
|
|
# pad to only display semi-circle |
|
|
|
|
|
data[0].append(sum(data[0])) |
|
|
|
|
|
data[1].append("NULL") |
|
|
|
|
|
|
|
|
wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), startangle=-40, colors=palette_color) |
|
|
|
|
|
|
|
|
fig, (ax, lax) = plt.subplots(nrows=2, gridspec_kw={"height_ratios":[4, 1]}) |
|
|
|
|
|
|
|
|
|
|
|
palette_color = sns.color_palette('mako_r') |
|
|
|
|
|
wedges, texts = ax.pie(data[0], wedgeprops=dict(width=0.5), colors=palette_color) |
|
|
|
|
|
wedges[-1].set_visible(False) |
|
|
|
|
|
wedges[-2].set_visible(False) |
|
|
|
|
|
ax.set_ylim(-0.0, 1.0) |
|
|
|
|
|
|
|
|
bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) |
|
|
|
|
|
kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") |
|
|
|
|
|
|
|
|
legend_labels = [f"{data[0][i]:3.2f} ms - {data[1][i]}" for i in range(len(data[0])) if data[1][i] != "NULL"] |
|
|
|
|
|
lax.legend(wedges, legend_labels, borderaxespad=0, loc="upper center") |
|
|
|
|
|
lax.set_ylim(0.0, 0.25) |
|
|
|
|
|
lax.axis("off") |
|
|
|
|
|
|
|
|
for i, p in enumerate(wedges): |
|
|
|
|
|
ang = (p.theta2 - p.theta1)/2. + p.theta1 |
|
|
|
|
|
y = np.sin(np.deg2rad(ang)) |
|
|
|
|
|
x = np.cos(np.deg2rad(ang)) |
|
|
|
|
|
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] |
|
|
|
|
|
connectionstyle = f"angle,angleA=0,angleB={ang}" |
|
|
|
|
|
kw["arrowprops"].update({"connectionstyle": connectionstyle}) |
|
|
|
|
|
ax.annotate(f"{data[1][i]} - {data[0][i]:2.2f} ms", xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw) |
|
|
|
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
|
|
|
plt.rcParams.update({'font.size': 18}) |
|
|
|
|
|
|
|
|
plt.rcParams.update({'font.size': 16}) |
|
|
fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') |
|
|
fig.savefig(os.path.join(output_path, fname), bbox_inches='tight') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
def main(): |
|
|
donut_plot(read_timings_from_csv(prefetch_result), "plot-timing-prefetch.pdf") |
|
|
|
|
|
donut_plot(read_timings_from_csv(distprefetch_result), "plot-timing-distprefetch.pdf") |
|
|
|
|
|
donut_plot(read_timings_from_csv(dram_result), "plot-timing-dram.pdf") |
|
|
|
|
|
donut_plot(read_timings_from_csv(hbm_result), "plot-timing-hbm.pdf") |
|
|
|
|
|
donut_plot(read_timings_from_csv(prefetch_result), "plot-timing-prefetch.pdf") |
|
|
|
|
|
|
|
|
timings = [ |
|
|
|
|
|
read_timings_from_csv(prefetch_result, fn_nice_prefetch), |
|
|
|
|
|
read_timings_from_csv(distprefetch_result, fn_nice_prefetch), |
|
|
|
|
|
read_timings_from_csv(dram_result, fn_nice_normal), |
|
|
|
|
|
read_timings_from_csv(hbm_result, fn_nice_normal) |
|
|
|
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
maxtime = max([sum(timings[0][0]), sum(timings[1][0]), sum(timings[2][0]), sum(timings[3][0])]) |
|
|
|
|
|
|
|
|
|
|
|
donut_plot(timings[0], maxtime, "plot-timing-prefetch.pdf") |
|
|
|
|
|
donut_plot(timings[1], maxtime, "plot-timing-distprefetch.pdf") |
|
|
|
|
|
donut_plot(timings[2], maxtime, "plot-timing-dram.pdf") |
|
|
|
|
|
donut_plot(timings[3], maxtime, "plot-timing-hbm.pdf") |
|
|
|
|
|
donut_plot(read_timings_from_csv(prefetch_result, fn_nice_prefetch), maxtime, "plot-timing-prefetch.pdf") |
|
|
|
|
|
|
|
|
tex_table(generate_speedup_table(), "table-qdp-speedup.tex") |
|
|
tex_table(generate_speedup_table(), "table-qdp-speedup.tex") |
|
|
tex_table(generate_rawtime_base_table(), "table-qdp-baseline.tex") |
|
|
tex_table(generate_rawtime_base_table(), "table-qdp-baseline.tex") |
|
|
|
|
|
|
|
|